

User Manual

PV Grid-Connected Inverter SG30CX / SG33CX / SG40CX / SG50CX / SG30CX-NI / SG50CX-NI

All Rights Reserved

All Rights Reserved

No part of this document can be reproduced in any form or by any means without the prior written permission of Sungrow Power Supply Co., Ltd (hereinafter "SUNGROW").

Trademarks

SUNGROW and other Sungrow trademarks used in this manual are owned by SUNGROW.

All other trademarks or registered trademarks mentioned in this manual are owned by their respective owners.

Software Licenses

- It is prohibited to use data contained in firmware or software developed by SUNGROW, in part or in full, for commercial purposes by any means.
- It is prohibited to perform reverse engineering, cracking, or any other operations that compromise the original program design of the software developed by SUNGROW.

About This Manual

The manual mainly contains the product information, as well as guidelines for installation, operation, and maintenance. The manual does not include complete information about the photovoltaic (PV) system. Readers can get additional information at **www.sungrowpower. com** or on the webpage of the respective component manufacturer.

Validity

This manual is valid for the following model of low-power grid-connected PV string inverters:

- SG30CX
- SG33CX
- SG40CX
- SG50CX
- SG30CX-NI
- SG50CX-NI

It will be referred to as "inverter" hereinafter unless otherwise specified.

Target Group

This manual is intended for professional technicians who are responsible for installation, operation, and maintenance of inverters, and users who need to check inverter parameters. The inverter must only be installed by professional technicians. The professional technician is required to meet the following requirements:

- Know electronic, electrical wiring and mechanical expertise, and be familiar with electrical and mechanical schematics.
- Have received professional training related to the installation and commissioning of electrical equipment.
- Be able to quickly respond to hazards or emergencies that occur during installation and commissioning.
- Be familiar with local standards and relevant safety regulations of electrical systems.
- Read this manual thoroughly and understand the safety instructions related to operations.

How to Use This Manual

Please read this manual carefully before using the product and keep it properly at a place for easy access.

All contents, pictures, marks, and symbols in this manual are owned by SUNGROW. No part of this document may be reprinted by the non-internal staff of SUNGROW without written authorization.

Contents of this manual may be periodically updated or revised, and the actual product purchased shall prevail. Users can obtain the latest manual from **support.sungrowpower.com** or sales channels.

Symbols

This manual contains important safety instructions, which are highlighted with the following symbols, to ensure personal and property safety during usage, or to help optimize the product performance in an efficient way.

Please carefully understand the meaning of these warning symbols to better use the manual.

DANGER

Indicates high-risk potential hazards that, if not avoided, may lead to death or serious injury.

A WARNING

Indicates moderate-risk potential hazards that, if not avoided, may lead to death or serious injury.

CAUTION

Indicates low-risk potential hazards that, if not avoided, may lead to minor or moderate injury.

NOTICE

Indicates potential risks that, if not avoided, may lead to device malfunctions or financial losses.

"NOTE" indicates additional information, emphasized contents or tips that may be helpful, e.g., to help you solve problems or save time.

Contents

All Rights Reserved			
About This ManualII			
1 Safety Instructions	1		
1.1 Unpacking and Inspection	2		
1.2 Installation Safety	3		
1.3 Electrical Connection Safety	3		
1.4 Operation Safety	5		
1.5 Maintenance Safety	5		
1.6 Disposal Safety	7		
2 Product Description	8		
2.1 System Introduction	8		
2.2 Product Introduction	9		
2.3 Symbols on Product	11		
2.4 LED Indicator	12		
2.5 DC Switch	13		
2.6 Circuit Diagram	13		
2.7 Function Description	14		
3 Unpacking and Storage	17		
3.1 Unpacking and Inspection	17		
3.2 Scope of Delivery			
3.3 Inverter Storage			
4 Mechanical Mounting	20		
4.1 Safety During Mounting	20		
4.2 Location Requirements	21		
4.2.1 Installation Environment Requirements	21		
4.2.2 Carrier Requirements	23		
4.2.3 Angle Requirements	23		
4.2.4 Clearance Requirements	24		
4.3 Installation Tools	26		
4.4 Moving the Inverter	27		
4.4.1 Manual Transport			

4.4.2 Hoisting Transport	28
4.5 Installing Mounting-bracket	29
4.5.1 PV Bracket-Mounted Installation	30
4.5.2 Wall-Mounted Installation	31
4.6 Installing the Inverter	32
5 Electrical Connection	34
5.1 Safety Instructions	34
5.2 Terminal Description	36
5.3 Electrical Connection Overview	37
5.4 Crimp OT/DT terminal	
5.5 External Protective Grounding Connection	40
5.5.1 External Protective Grounding Requirements	40
5.5.2 Connection Procedure	41
5.6 AC Cable Connection	41
5.6.1 AC Side Requirements	41
5.6.2 Requirements for OT/DT Terminal	43
5.6.3 Connection Procedure	44
5.7 DC Cable Connection	46
5.7.1 PV Input Configuration	48
5.7.2 Assembling PV Connectors	49
5.7.3 Installing PV Connector	51
5.8 Communication Junction Box	52
5.9 Communication Wiring Board	53
5.10 RS485 Connection	53
5.10.1 Interface Description	53
5.10.2 RS485 Communication System	54
5.10.3 Connection Procedure(Terminal Block)	56
5.10.4 Connection Procedure (RJ45 Ethernet Port)	57
5.11 Dry Contact Connection	59
5.11.1 Dry Contact Function	59
5.11.2 Wiring Procedure	62
5.12 DRM Connection(For Countries "AU" and "NZ")	
5.12.1 DRM Function	
5.12.2 Connection Procedure	63
5.13 Communication Module Connection (optional)	65
6 Commissioning	66

6.1 Inspection Before Commissioning	66
6.2 Commissioning Procedure	66
7 iSolarCloud App	68
7.1 Brief Introduction	68
7.2 Installing App	68
7.3 Function Overview	69
7.4 Login	69
7.4.1 Requirements	69
7.4.2 Login Procedure	69
7.5 Home	74
7.6 Run Information	76
7.7 View Records	78
7.8 More	80
7.8.1 System Parameters	80
7.8.2 Operation Parameters	81
7.8.3 Power Regulation Parameters	83
7.8.4 Communication Parameters	88
7.8.5 Firmware Update	88
7.8.6 Grounding Detection	89
7.8.7 Password Changing	90
8 System Decommissioning	91
8.1 Disconnecting Inverter	91
8.2 Dismantling the Inverter	91
8.3 Disposal of Inverter	92
9 Troubleshooting and Maintenance	93
9.1 Troubleshooting	93
9.2 Maintenance	103
9.2.1 Maintenance Notices	103
9.2.2 Routine Maintenance	
9.2.3 Cleaning Air Inlet and Outlet	105
9.2.4 Fan Maintenance	
10 Appendix	
10.1 Technical Data	
10.2 Wring Distance of DI Dry Contact	116
10.3 Quality Assurance	
10.4 Contact Information	

1 Safety Instructions

When installing, commissioning, operating, and maintaining the product, strictly observe the labels on the product and the safety requirements in the manual. Incorrect operation or work may cause:

- Injury or death to the operator or a third party.
- Damage to the product and other properties.

A WARNING

- Do not perform any operation on the product (including but not limited to, handling, installing, powering on, or maintaining the product, performing electrical connection, and working at heights) in harsh weather conditions, such as thunder and lightning, rain, snow, and Level 6 or stronger winds. SUNGROW shall not be held liable for any damage to the device due to force majeure, such as earthquakes, floods, volcanic eruptions, mudslides, lightning strikes, fires, wars, armed conflicts, typhoons, hurricanes, tornadoes, and other extreme weathers.
- In case of fire, evacuate from the building or product area and call the fire alarm.
 Re-entry into the burning area is strictly prohibited under any circumstances.

NOTICE

- Tighten the screws with the specified torque using tools when fastening the product and terminals. Otherwise, the product may be damaged. And the damage caused is not covered by the warranty.
- Learn how to use tools correctly before using them to avoid hurting people or damaging the device.
- Maintain the device with sufficient knowledge of this manual and use proper tools.

SUNGROW

- The safety instructions in this manual are only supplements and cannot cover all the precautions that should be followed. Perform operations considering actual onsite conditions.
- SUNGROW shall not be held liable for any damage caused by violation of general safety operation requirements, general safety standards, or any safety instruction in this manual.
- When installing, operating, and maintaining the product, comply with local laws and regulations. The safety precautions in this manual are only supplements to local laws and regulations.
- During the product transport, installation, wiring, maintenance, etc., the materials and tools prepared by users must meet the requirements of applicable local laws and regulations, safety standards, and other specifications. SUNGROW shall not be held liable for any damage to the product caused by the adoption of materials and tools that fail to meet the above-mentioned requirements.
- Operations on the product, including but not limited to, handling, installing, wiring, powering on, maintenance, and use of the product, must not be performed by unqualified personnel. SUNGROW shall not be held liable for any damage to the product resulting from operations done by unqualified personnel.
- Where the transport of the product is arranged by users, SUNGROW shall not be held liable for any damage to the product that is caused by users themselves or the third-party transport service providers designated by the users.
- SUNGROW shall not be held liable for any damage to the product caused by the negligence, intent, fault, improper operation, and other behaviors of users or third-party organizations.
- SUNGROW shall not be held liable for any damage to the product arising from reasons unrelated to SUNGROW.

1.1 Unpacking and Inspection

WARNING

- Check all safety signs, warning labels and nameplates on devices.
- The safety signs, warning labels and nameplates must be clearly visible and cannot be removed or covered before the device is decommissioned.

NOTICE

After receiving the product, check whether the appearance and structural parts of the device are damaged, and check whether the packing list is consistent with the actual ordered product. If there are problems with the above inspection items, do not install the device and contact your distributor first. If the problem persists, contact SUNGROW in time.

1.2 Installation Safety

A DANGER

- Make sure there is no electrical connection before installation.
- Before drilling, avoid the water and electricity wiring in the wall.

Improper installation may cause personal injury!

- If the product supports hoisting transport and is hoisted by hoisting tools, no one is allowed to stay under the product.
- When moving the product, be aware of the product weight and keep the balance to prevent it from tilting or falling.

NOTICE

Before operating the product, must check and ensure that tools to be used have been maintained regularly.

1.3 Electrical Connection Safety

A DANGER

- Before electrical connections, please make sure that the inverter is not damaged, otherwise it may cause danger!
- Before electrical connections, please make sure that the inverter switch and all switches connected to the inverter are set to "OFF", otherwise electric shock may occur!

DANGER

The PV string will generate lethal high voltage when exposed to sunlight.

- Operators must wear proper personal protective equipment during electrical connections.
- Must ensure that cables are voltage-free with a measuring instrument before touching DC cables.
- Respect all safety instructions listed in relevant documents about PV strings.
- The inverter must not be connected to a PV string that requires positive or negative grounding.

DANGER

Danger to life due to a high voltage inside the inverter!

- Be sure to use special insulation tools during cable connections.
- Note and observe the warning labels on the product, and perform operations strictly following the safety instructions.
- Respect all safety instructions listed in this manual and other pertinent documents.

A WARNING

Damage to the product caused by incorrect wiring is not covered by the warranty.

- Electrical connection must be performed by professionals.
- All cables used in the PV generation system must be firmly attached, properly insulated, and adequately dimensioned.

WARNING

- Check the positive and negative polarity of the PV strings, and connect the PV connectors to corresponding terminals only after ensuring polarity correctness.
- During the installation and operation of the inverter, please ensure that the positive or negative poles of PV strings do not short-circuit to the ground. Otherwise, an AC or DC short-circuit may occur, resulting in equipment damage. The damage caused by this is not covered by the warranty.
- Do not connect any load between the inverter and the AC circuit breaker directly connected to it, so as to prevent the switch from tripping by mistake.
- Determine the specifications of AC switch strictly in compliance with the applicable local laws and regulations and safety standards or the recommendation by SUNGROW. Otherwise, the switch may not open in time in the event of something abnormal, which may then lead to safety incidents.

NOTICE

Comply with the safety instructions related to PV strings and the regulations related to the local grid.

1.4 Operation Safety

A DANGER

When routing cables, ensure a distance of at least 30 mm between the cables and heat-generating components or areas to protect the insulation layer of cables from aging and damage.

When the product is working:

- Do not touch the product enclosure.
- It is strictly forbidden to plug and unplug any connector on the inverter.
- Do not touch any wiring terminal of the inverter. Otherwise, electric shock may occur.
- Do not disassemble any parts of the inverter. Otherwise, electric shock may occur.
- It is strictly forbidden to touch any hot parts of the inverter (such as the heat sink). Otherwise, it may cause burns.
- Do not connect or remove any PV string or any PV module in a string. Otherwise, electric shock may occur.
- If the inverter is equipped with a DC switch, do not operate it. Otherwise, it may cause device damage or personal injury.

1.5 Maintenance Safety

A DANGER

Risk of inverter damage or personal injury due to incorrect service!

- Before maintenance, disconnect the AC circuit breaker on the grid side and then the DC switch. If a fault that may cause personal injury or device damage is found before maintenance, disconnect the AC circuit breaker and wait until the night before operating the DC switch. Otherwise, a fire inside the product or an explosion may occur, causing personal injuries.
- After the inverter is powered off for 5 minutes, measure the voltage and current with professional instrument. Only when there is no voltage nor current can operators who wear protective equipment operate and maintain the inverter.
- Even if the inverter is shut down, it may still be hot and cause burns. Wear protective gloves before operating the inverter after it cools down.

DANGER

Touching the power grid or the contact points and terminals on the inverter connected to the power grid may lead to electric shock!

• The power grid side may generate voltage. Always use a standard voltmeter to ensure that there is no voltage before touching.

To prevent misuse or accidents caused by unrelated personnel, post prominent warning signs or demarcate safety warning areas around the product.

NOTICE

To avoid the risk of electric shock, do not perform any other maintenance operations beyond those described in this manual. If necessary, contact your distributor first. If the problem persists, contact SUNGROW. Otherwise, the losses caused is not covered by the warranty.

NOTICE

- If the paint on the inverter enclosure falls or rusts, repair it in time. Otherwise, the inverter performance may be affected.
- Do not use cleaning agents to clean the inverter. Otherwise, the inverter may be damaged, and the loss caused is not covered by the warranty.
- As the inverter contains no parts that can be maintained, never open the enclosure of the inverter or replace any internal components without authorization. Otherwise, the loss caused is not covered by the warranty.
- Do not open the maintenance door in rainy or snowy weather. If it is inevitable, take proper protective measures to avoid the ingress of rainwater and snow into the maintenance compartment; otherwise, the product's operation may be affected.
- Before closing the maintenance door, check whether there is any object left inside the maintenance compartment, such as screws, tools, etc.
- It is recommended for users to use cable sheathing to protect the AC cable. If the cable sheathing is used, make sure it is positioned inside the maintenance compartment.

1.6 Disposal Safety

WARNING

Please scrap the product in accordance with relevant local regulations and standards to avoid property losses or casualties.

2 Product Description

2.1 System Introduction

The inverter is a transformerless 3-phase PV grid-connected inverter. As an integral component in the PV power system, the inverter is designed to convert the direct current power generated from the PV modules into grid-compatible AC current and to feed the AC current into the utility grid.

The intended usage of the inverter is illustrated in the following figure.

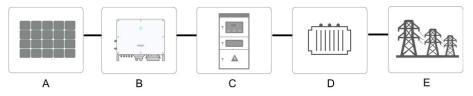


figure 2-1 Inverter Application in PV Power System

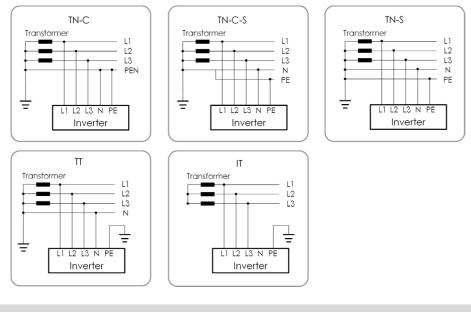
WARNING

The PV modules in the system must comply with the IEC 61730-1 (2016) class II standard.

When designing the system, ensure that the operating ranges of all devices that are connected to the inverter meet the requirements of the inverter.

The inverter must not be connected to a PV string that requires positive or negative grounding.

Do not connect any local load between the inverter and the AC circuit breaker.

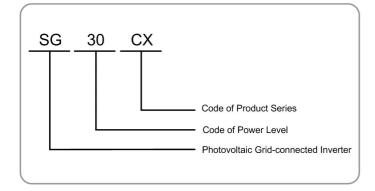

NOTICE

The inverter applies only to the scenarios described in this manual.

Item	Description	Note
А	PV strings	Monocrystalline silicon, polycrystalline silicon and thin-film
		without grounding.
В	Inverter	SG30CX, SG33CX, SG40CX, SG50CX, SG30CX-NI,
		SG50CX-NI.
С	Grid connection	Includes devices such as AC circuit breaker, SPD, metering
0	cabinet	device.

Item	Description	Note
D	Transformer	Boost the low voltage from the inverter to grid-compatible me- dium voltage.
E	Utility grid	TN-C, TN-S, TN-C-S, TT, IT.

The following figure shows the common grid configurations.


NOTICE

In a TT power grid, the N-PE voltage should be lower than 30 V.

2.2 Product Introduction

Model Description

The model description is as follows(Take SG30CX as an example) :

Appearance

The following figure shows the appearance of the inverter. The image shown here is for reference only. The actual product received may differ.

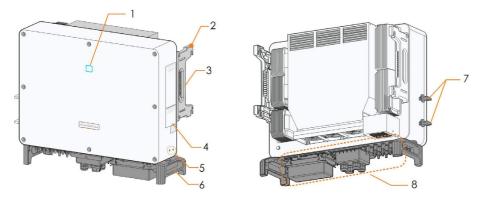


figure 2-2 Inverter Appearance

No.	Name	Description	
1	LED indicator	To indicate the current working state of the inverter.	
2	Mounting lugs	To hang the inverter onto the mounting-bracket.	
3	Side handles	To move the inverter.	
4	Labels	Warning symbols, nameplate, and QR code.	
	External protective		
5	grounding	Use to ground the inverter.	
	terminals		
6	Bottom handles	To move the inverter.	
7	DC switches	To disconnect the DC current safely.	
8	Wiring area	AC terminals, DC terminals, and communication terminals.	
0		For details, refer to"5.2 Terminal Description"	

Dimensions

The following figure shows the dimensions of the inverter.

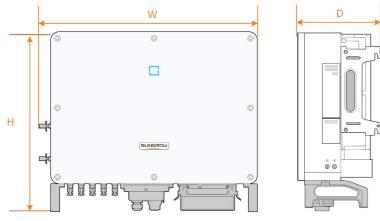


figure 2-3 Product Dimensions(in mm)

*The image shown here is for reference only. The actual product you receive may differ.

Туре	Dimensions (W*H*D)	Weight	
SG30CX			
SG30CX-NI	702×595×310 mm	50 kg	
SG33CX			
SG40CX		58 kg	
SG50CX	782×645×310 mm	62 kg	
SG50CX-NI		62 kg	

2.3 Symbols on Product

Symbol	Explanation	
X	Do not dispose of the inverter together with household waste.	
TÜVRheinland	TÜV mark of conformity.	
CE	CE mark of conformity.	
	EU/EEA Importer.	
RoHS	RoHS labeling	
	The product complies with the requirements of the applicable EU	
	directives.	
	Regulatory compliance mark.	
×	The inverter does not have a transformer.	

Symbol	Explanation
	CGC-SOLAR mark of conformity.
	Danger to life due to high voltages!
<u>_</u>	Only qualified personnel can open and service the inverter.
	Disconnect the inverter from all the external power sources before maintenance!
	Burn danger due to the hot surface that may exceed 60°C.
	Do not touch live parts for 5 minutes after disconnection from the power
	sources.
i	Read the user manual before maintenance!

* The table shown here is for reference only. The actual product received may differ.

2.4 LED Indicator

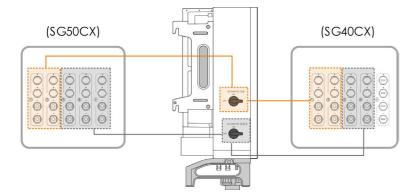
The LED indicator on the front of the inverter indicates the working state of the inverter.

LED Color	State	Definition
	On	The device is connected to the grid and operating
		normally.
	Fast blink	The Bluetooth connection is established, and there is
	(Period: 0.2s)	data communication.
		No system fault occurs.
Blue	Slow blink	The device is in standby or startup state (not feeding
Diue	(Period: 2s)	The device is in standby or startup state (not feeding power into the grid).
		power into the glid).
	On	A fault occurs and the device cannot connect to the
		grid.
	Blink	The Bluetooth connection is established, data commu-
		nication in process, and a system fault occurs.
Red		
	OFF	Both the AC and DC sides are powered down.
Crav		
Gray		

table 2-1 LED Indicator State Description

WARNING

Voltage may still be present in AC side circuits after the indicator is off. Pay attention to the electricity safety when operating.


2.5 DC Switch

The DC switch is used to disconnect the DC current safely whenever necessary.

The SG30CX-NI and SG50CX-NI is not equipped with DC switch.

The SG30CX and SG33CX is equipped with one DC switch to control the connection and disconnection of all DC terminals.

The SG40CX and SG50CX are equipped with two DC switches separately controlling a group of DC inputs. The correspondence is as follows:

* The image shown here is for reference only. The actual product received may differ.

Turn the DC switches to the ON position before restarting the inverter.

2.6 Circuit Diagram

1

The following figure shows the main circuit of the inverter.

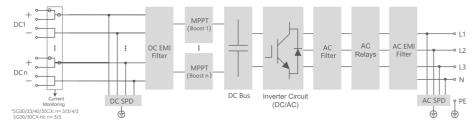


figure 2-4 Circuit Diagram

• The DC SPD provides a discharge circuit for the DC side overvoltage to prevent it from damaging the internal circuits of the inverter.

- EMI filters can filter out the electromagnetic interference inside the inverter to ensure that the inverter meets the requirements of electromagnetic compatibility standards.
- The MPPT is used to ensure a maximum power from PV arrays at different PV input conditions.
- The Inverter Circuit converts the DC power into grid-compliant AC power and feeds it into the grid.
- The AC filter filters the output AC component of high frequency to ensure that the output current meets the grid requirements.
- The AC relay isolates the AC output of the inverter from the grid, making the inverter safe from the grid in case of inverter failure or grid failure.
- The AC SPD provides a discharge circuit for the AC side overvoltage to prevent it from damaging the internal circuits of the inverter.

A DANGER

If the lightning level exceeds the protection level of the product, surge protection and overvoltage protection may fail, resulting in electric shock and fatal injury!

2.7 Function Description

The inverter is equipped with the following functions:

Conversion Function

The inverter converts the DC current into grid-compatible AC current and feeds the AC current into the grid.

Data Storage

The inverter logs running information, error records, etc.

Parameter Configuration

The inverter provides various settable parameters. Users can set parameters via the App to meet the requirements and optimize the performance.

Communication Interface

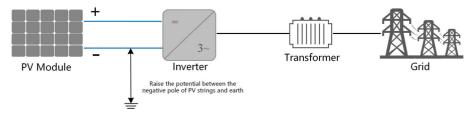
The inverter is designed with standard RS485 communication interfaces and communication accessory port.

The standard RS485 communication interfaces are used to establish communication connection with monitoring devices and upload monitoring data by using communication cables. The communication accessory port is used to connect communication module manufactured by SUNGROW, and upload monitoring data by means of wireless communication.

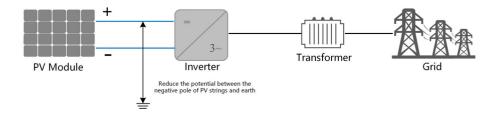
The inverter can be connected to communication devices via either of the two interfaces. After communication connection is established, users can view inverter information or set inverter parameters through the iSolarCloud.

It is recommended to use the communication module from SUNGROW. Using a device from other companies may lead to communication failure or other unexpected damage.

The inverter can provide export control but will require the use of a external smart meter. The export control functionality has not been tested to AS/NZS 4777.2:2020.


Protection Function

The protective functions are integrated in the inverter, including anti-island protection, LVRT/ ZVRT, DC reversed polarity protection, AC short circuit protection, leakage current protection, DC overvoltage/overcurrent protection, etc.


PID recovery

The PID effect (Potential Induced Degradation) of PV modules will cause serious damage to generated output and yield, which can be avoided or recovered by PID recovery function.

• For positive voltage scheme, after the PID is enabled, the voltage to ground of all PV strings is greater than 0, and therefore the PV string-to-ground voltage is a positive value.

• For negative voltage scheme, after the PID is enabled, the voltage to ground of all PV strings is lower than 0, and therefore the PV string-to-ground voltage is a negative value.

NOTICE

- Before enabling the PID recovery function, make sure the voltage polarity of the PV modules to ground meets requirement. If there are any questions, contact the PV module manufacturer or read the corresponding user manual.
- PID recovery function and Q at night cannot be enabled at the same time.
- If the voltage scheme for the PID protection/recovery function does not meet the requirement of corresponding PV modules, the PID will not work as expected or even damage the PV modules.
- If the PID recovery function is enabled, it only works at night.
- After the PID recovery function is enabled, the voltage of the PV string to ground is 500Vdc by default, and the default value can be modified through the App.

AFCI Function(Optional)

AFCI activation

This function can be enabled to detect whether arc occurs in the DC circuit of the inverter.

AFCI self-test

This function is intended to detect whether the AFCI function of the inverter is normal.

3 Unpacking and Storage

3.1 Unpacking and Inspection

The product is thoroughly tested and strictly inspected before delivery. Nonetheless, damage may still occur during shipping. For this reason, please conduct a thorough inspection after receiving the product.

- Check the packing case for any visible damage.
- · Check the scope of delivery for completeness according to the packing list.
- · Check the inner contents for damage after unpacking.

Contact SUNGROW or the transport company in case of any damage or incompleteness, and provide photos to facilitate services.

Do not dispose of the original packing case. It is recommended to store the device in the original packing case when the product is decommissioned.

NOTICE

After receiving the product, check whether the appearance and structural parts of the device are damaged, and check whether the packing list is consistent with the actual ordered product. If there are problems with the above inspection items, do not install the device and contact your distributor first. If the problem persists, contact SUNGROW in time.

If any tool is used for unpacking, be careful not to damage the product.

SUNGROW

3.2 Scope of Delivery

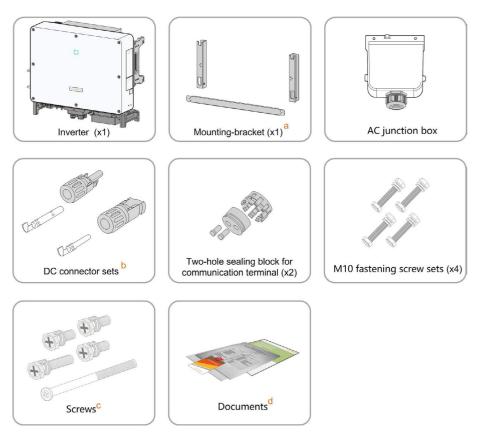


figure 3-1 Scope of Delivery

a. The mounting-bracket includes 2 mounting-bracket components and 1 connecting bar.

b. The SG30CX, SG30CX-NI, SG33CX, SG40CX, SG50CX, SG50CX-NI are respectively provided with 6, 6, 6, 8, 10, 10 pairs of DC connectors and cord end terminals.

c. The screws include 1 M4×25 screw, 3 M4×10 screws, and 2 M6×65 screws.

d. The documents include the quick installation guide, packing list, warranty card, etc.

3.3 Inverter Storage

Proper storage is required if the inverter is not installed immediately.

- Store the inverter in the original packing case with the desiccant inside.
- The storage temperature must be always between -40°C and +70°C, and the storage relative humidity must be always between 0 and 95 %, non-condensing.
- In case of stacking storage, the number of stacking layers should never exceed the limit marked on the outer side of the packing case.
- The packing case should be upright.

- If the inverter needs to be transported again, pack it strictly before loading and transporting it.
- Do not store the inverter in places susceptible to direct sunlight, rain, and strong electric field.
- Do not place the inverter in places with items that may affect or damage the inverter.
- Store the inverter in a clean and dry place to prevent dust and water vapor from eroding.
- Do not store the inverter in places with corrosive substances or susceptible to rodents and insects.
- Carry out periodic inspections. Inspection shall be conducted at least once every six months. If any insect or rodent bites are found, replace the packaging materials in time.
- If the inverter has been stored for more than a year, inspection and testing by professionals are required before it can be put into operation.

NOTICE

Please store the inverter according to the storage requirements. Product damage caused by failure to meet the storage requirements is not covered by the warranty.

4 Mechanical Mounting

A WARNING

Respect all local standards and requirements during mechanical installation.

4.1 Safety During Mounting

DANGER

Make sure there is no electrical connection before installation. Before drilling, avoid the water and electricity wiring in the wall.

A WARNING

For specific requirements for the installation environment, see "4.2.1 Installation Environment Requirements". In case the environment where the device is installed does not meet the requirements, SUNGROW shall not be held liable for any property damage arising therefrom.

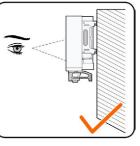
Improper handling may cause personal injury!

- When moving the inverter, be aware of its weight and keep the balance to prevent it from tilting or falling.
- Wear proper protective equipment before performing operations on the inverter.
- The bottom terminals and interfaces of the inverter cannot directly contact the ground or other supports. The inverter cannot be directly placed on the ground.

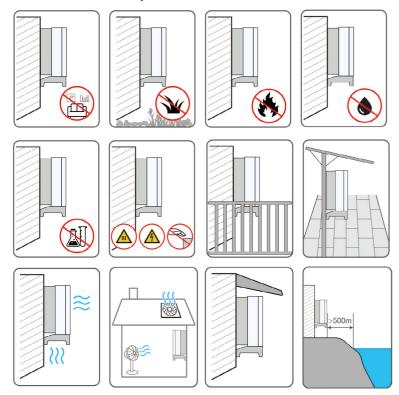
NOTICE

When installing devices, ensure that no device in the system causes it hard for the DC switch and the AC circuit breaker to act or hinders maintenance personnel from operating.

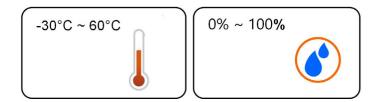
If drilling is required during installation:


- Wear goggles and protective gloves when drilling holes.
- Make sure to avoid the water and electricity wiring in the wall before drilling.
- Protect the product from shavings and dust.

4.2 Location Requirements


To a large extent, a proper installation location ensures safe operation, service life, and performance of the inverter.

- The inverter with protection rating IP66 can be installed both indoors and outdoors.
- The inverter should be installed at a height that allows easy viewing of the LED indicator panel, as well as easy electrical connection, operation and maintenance.



4.2.1 Installation Environment Requirements

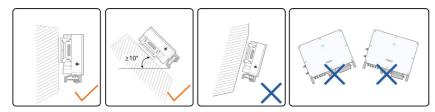
The inverter produces noise during operation, thus it is not recommended to install it in
places for residential purpose. If this cannot be avoided, it is recommended to install the
inverter in a place over 25 meters away from the residential area, or take noise mitigation
measures.

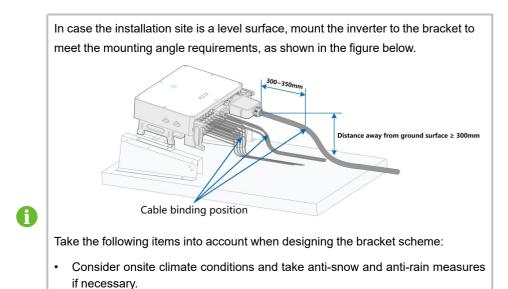
- If the inverter is installed in a place with lush vegetation, weed on a regular basis. In addition, the ground beneath the inverter needs to undergo certain treatment, such as laying cement or gravel, etc. (an area of 3m×2.5m is recommended).
- Do not install the inverter in an environment with flammables, explosives, or smoke.
- Do not install the inverter in places prone to water leak, e.g., under the air-conditioner vent, the air vent, or the cable outlet window of the machine room, so as to prevent device damage or short circuit caused by intrusion of water.
- Do no install the inverter in a place with corrosives such as corrosive gas and organic solvent, etc.
- When the inverter is running, its surface may carry high voltages or get very hot. Do not touch it; otherwise, it may lead to burns or electric shocks.
- Do not install the inverter in a place that is easy to reach for people.
- Install the inverter in a place with shelter, so as to prevent it from getting impacted by direct sunlight and severe weather (e.g. snow, rain, and lightning). The inverter will derate in high temperatures for self-protection. If installed in a place directly exposed to sunlight, as the temperature rises, the inverter may witness power reduction.
- Good heat dissipation is very important to the inverter. Please install the inverter in a ventilated environment.
- If the inverter needs to be installed in a closed environment, please install additional heat dissipation or ventilation devices. During the running of the inverter, the room temperature should not be higher than the outdoor ambient temperature.
- Please consult SUNGROW before installing inverters outdoors in areas prone to salt damage, which mainly are coastal areas within 500 meters of the coast. The sedimentation amount of salt spray is correlated to the characteristics of the seawater, sea winds, precipitation, air humidity, topography, and forest coverage in the adjacent sea areas, and there are substantial differences between different coastal areas.
- Do not install the inverter in an environment contaminated with chemicals such as halogen and sulfide.
- Do not install the inverter in an environment with vibration and strong electromagnetic field. Strong-magnetic-field environments refer to places where magnetic field strength measures over 30 A/m.
- In dusty environments such as places full of dust, smoke, or floc, particles may cling to the device's air outlet or heat sink, thus impacting its heat dissipation performance or even getting it damaged. Therefore, do not install the inverter in dusty environments. If the inverter has to be installed in such environments, please clean its fans and heat sink on a regular basis to ensure a good heat dissipation performance.
- The inverter should be installed in a place over 30 m away from the third party wireless communication facilities and environments for living.
- The average temperature approximately 1 m around the inverter should be taken as its operating temperature. The temperature and humidity should meet the requirements below:

4.2.2 Carrier Requirements

The mounting structure where the inverter is installed must comply with local/national standards and guidelines. Ensure that the installation surface is solid enough to bear four times the weight of the inverter and is suitable for the dimensions of the inverter (e.g. cement walls, plasterboard walls, etc.).

Do not install the inverter on a carrier that may vibrate in resonance, so as to avoid making bigger noise.

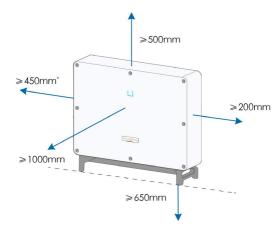

The structure should meet the following requirements:



4.2.3 Angle Requirements

Install the inverter vertically or at the maximum allowable rear tilt angle. Do not install the inverter horizontally, forward, excessively backward, sideways, or upside down.

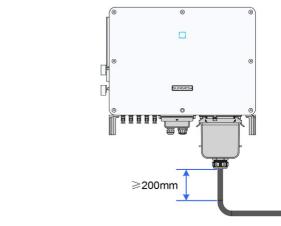
Inverters in floating plants cannot be installed at a back tilt.



- Ensure that the waterproof connectors are at least 300mm higher than the ground surface.
- Bind the cables at the positions 300~350mm away from the DC connector, AC waterproof terminal, and communication waterproof terminal.
- The various waterproof terminals should be tightened with the torque specified in this manual to ensure that they are securely sealed.

4.2.4 Clearance Requirements

Reserve enough clearance around the inverter to ensure sufficient space for heat dissipation.

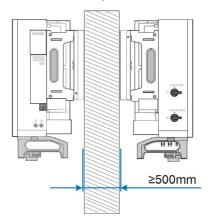


* In case this distance is less than the distance in the diagram, move the inverter from the mounting-bracket or wall before maintaining fans.

i

The distance between the bottom of the inverter and the ground surface is determined according to the bending radius of the AC cable used and the installation environment. In addition, the following conditions must be met:

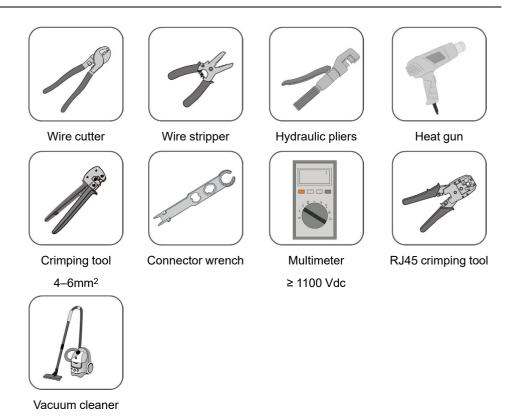
• The distance between the bottom of the inverter and the ground surface is not less 650 mm.



- The AC cable is vertically led into the cabinet, and the straight length is higher than 200mm.
- If there are any questions, please consult the AC cable manufacturer.

In case of multiple inverters, reserve specific clearance between the inverters. For other installation scenarios, please refer to the relevant technical documents on http://support.sungrowpower.com/.

In case of back-to-back installation, reserve specific clearance between the two inverters.


Install the inverter at an appropriate height for ease of viewing LED indicator and operating switch(es).

4.3 Installation Tools

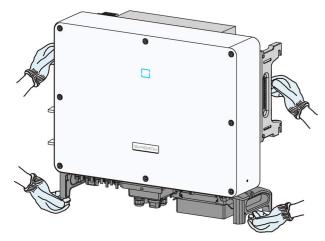
Installation tools include but are not limited to the following recommended ones. If necessary, use other auxiliary tools on site.

table 4-1 Tool specification

4.4 Moving the Inverter

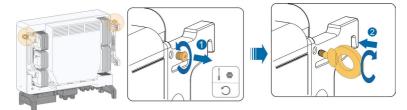
Before installation, remove the inverter from the packing case and move it to the installation site. Follow the instructions below as you move the inverter:

- Always be aware of the weight of the inverter.
- Lift the inverter using the handles positioned on both sides of the inverter.
- Move the inverter by one or two people or by using a proper transport tool.
- Do not release the equipment unless it has been firmly secured.

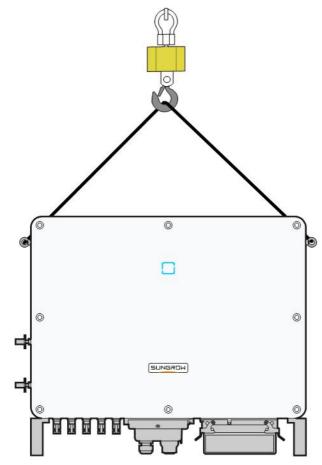

CAUTION

Improper handling may cause personal injury!

- Arrange an appropriate number of personnel to carry the inverter according to its weight, and installation personnel should wear protective equipment such as anti-impact shoes and gloves.
- Attention must be paid to the center of gravity of the inverter to avoid tilting during handling.
- Placing the inverter directly on a hard ground may cause damage to its metal enclosure. Protective materials such as sponge pad or foam cushion should be placed underneath the inverter.
- Move the inverter by holding the handles on it. Do not move the inverter by holding the terminals.


4.4.1 Manual Transport

Lift and move the inverter to the destination by using the side handles and bottom handles.


4.4.2 Hoisting Transport

Step 1 Release the sealing screws on the mounting lugs and store them properly. Anchor two M12 thread lifting rings to the lugs of the inverter.

Step 2 Lead the sling through the two lifting rings and fasten the tie-down strap.

Step 3 Hoist the inverter, and stop to check for safety when the inverter is 100mm above the ground. Continue hoisting the device to the destination after ensuring the safety.

Step 4 Remove the lifting rings and reassemble the sealing screws released in Step 1.

ACAUTION

Keep the inverter balanced throughout the hoisting process and avoid collisions with walls or other objects.

Stop hoisting in the event of severe weather, such as heavy rain, thick fog, or strong wind.

The lifting rings and the sling are not within the delivery scope.

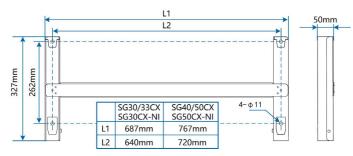
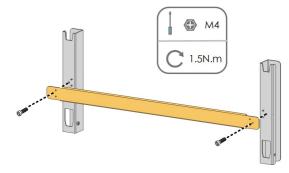
- - End

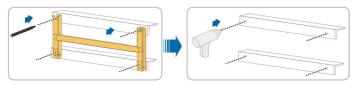
Н

4.5 Installing Mounting-bracket

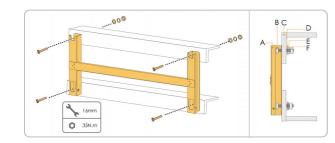
Inverter is installed on the wall and bracket by means of mounting bracket.

The expansion plug set shown below is recommended for the installation.

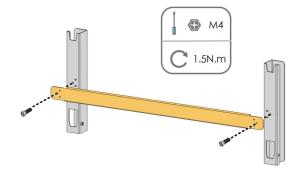

figure 4-1 Dimensions of Mounting-bracket

4.5.1 PV Bracket-Mounted Installation

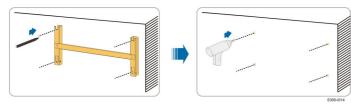

Step 1 Assemble the mounting-bracket.

Step 2 Level the assembled mounting-bracket by using the level, and mark the positions for drilling holes on the PV bracket. Drill the holes by using a hammer drill.

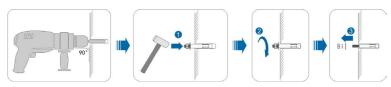
Step 3 Secure the mounting-bracket with bolts.



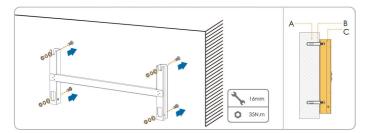
No.	Components	Description
Α	Mounting-bracket	_
В	Full threaded bolt	M10*45
С	Metal bracket	_
D	Flat washer	_
Е	Spring washer	_
F	Hex nuts	_


- - End

4.5.2 Wall-Mounted Installation


Step 1 Assemble the mounting-bracket.

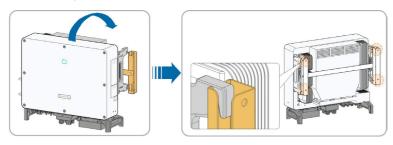
Step 2 Level the assembled mounting-bracket by using the level, and mark the positions for drilling holes.


Step 3 Insert the expansion bolts into the holes and secure them with a rubber hammer. Fasten the nut with a wrench to expand the bolt. Remove the nut, spring washer, and flat washer, and store them properly.

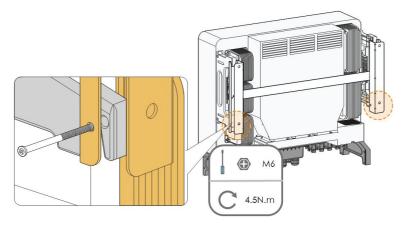
1

After removing the nut, spring washer, and flat washer, level the front of the expansion tube with the wall. Otherwise, the mounting brackets will not stay steady on the wall.

Step 4 Install the mounting-bracket to the wall with the expansion bolts with the expansion bolts.


No.	Components	Description
А	Wall	-
В	Expansion bolt	Fastening the bolt in the sequence of nut, spring wash- er, slat washer
С	Mounting-bracket	_

- - End


4.6 Installing the Inverter

Step 1 Take out the inverter from the packing case.

- **Step 2** If the installation position is high, hoist the inverter to the position (refer to ""4.4.2 Hoisting Transport""). Otherwise, skip this step.
- **Step 3** Hang the inverter to the mounting-bracket and ensure that the mounting ears perfectly engage with the mounting-bracket.

Step 4 Fix the inverter with screws.

- - End

5 Electrical Connection

5.1 Safety Instructions

DANGER

The PV string will generate lethal high voltage when exposed to sunlight.

- Operators must wear proper personal protective equipment during electrical connections.
- Must ensure that cables are voltage-free with a measuring instrument before touching DC cables.
- Respect all safety instructions listed in relevant documents about PV strings.

DANGER

- Before electrical connections, please make sure that the inverter switch and all switches connected to the inverter are set to "OFF", otherwise electric shock may occur!
- Ensure that the inverter is undamaged and all cables are voltage free before performing electrical work.
- Do not close the AC circuit breaker until the electrical connection is completed.

A WARNING

Do not damage the ground conductor. Do not operate the product in the absence of a properly installed ground conductor. Otherwise, it may cause personal injury or product damage.

Please use measuring devices with an appropriate range. Overvoltage can damage the measuring device and cause personal injury.

Damage to the product caused by incorrect wiring is not covered by the warranty.

- Electrical connection must be performed by professionals.
- Operators must wear proper personal protective equipment during electrical connections.
- All cables used in the PV generation system must be firmly attached, properly insulated, and adequately dimensioned. Cables used shall comply with the requirements of local laws and regulations.
- The factors that affect cable selection include rated current, cable type, routing mode, ambient temperature, and maximum expected line loss.

NOTICE

All electrical connections must comply with local and national/regional electrical standards.

- Cables used by the user shall comply with the requirements of local laws and regulations.
- Only with the permission of the national/regional grid department, the inverter can be connected to the grid.

NOTICE

- Install the external protective grounding cable first when performing electrical connection and remove the external protective grounding cable last when removing the inverter.
- Keep the AC output cable and the DC input cable close to each other during electrical connection.
- Comply with the safety instructions related to PV strings and the regulations related to the utility grid.

NOTICE

- After being crimped, the OT terminal must wrap the wires completely, and the wires must contact the OT terminal closely.
- When using a heat gun, protect the device from being scorched.
- Keep the PV+ cable and PV- cable close to each other when connecting DC input cables.
- Before connecting a power cable (such as the AC cable, the DC cable, etc.), confirm that the label and identifier on the power cable are correct.
- When laying out communication cables, separate them from power cables and keep them away from strong interference sources to prevent communication interruption.
- All vacant terminals must be covered with waterproof covers to prevent affecting the protection performance.
- Ensure that AC output cables are firmly connected. Failing to do so may cause inverter malfunction or damage to its AC connectors.
- When the wiring is completed, seal the gap at the cable inlet and outlet holes with fireproof/waterproof materials such as fireproof mud to prevent foreign matter or moisture from entering and affecting the long-term normal operation of the inverter.

0

The cable colors in figures in this manual are for reference only. Please select cables according to local cable standards.

5.2 Terminal Description

All electrical terminals are located at the bottom of the inverter.

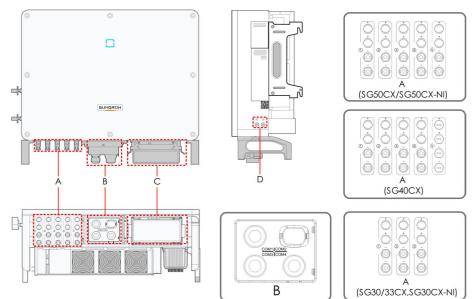
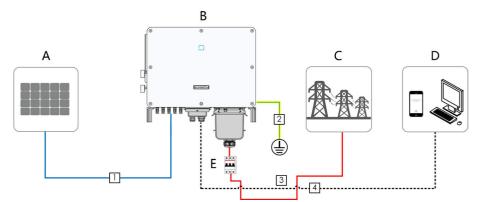


figure 5-1 Terminal Description


* The image shown here is for reference only. The actual product received may differ.

Item	Terminal	Mark	Note
			MC4 PV connector
			SG30CX, SG30CX-NI, SG33CX: 6 pairs of
А	PV terminals	+/-	terminals
			SG40CX: 8 pairs of terminals
			SG50CX, SG50CX-NI: 10 pairs of terminals
		COM1	For RS485 communication wiring.
В	Communica-	COM2	For Communication module connection.
	tion terminal	COM3	For digital input and output DI/DO wiring.
		COM4	For DRM communication wiring.

Item	Terminal	Mark	Note
С	AC junction		Remove the protective case and use the junc-
	box	—	tion box in the shipping accessory for wiring.
D	External pro-		use at least one of them to ground the inverter.
	tective		
	grounding		
	terminal		

5.3 Electrical Connection Overview

The electrical connection should be realized as follows:

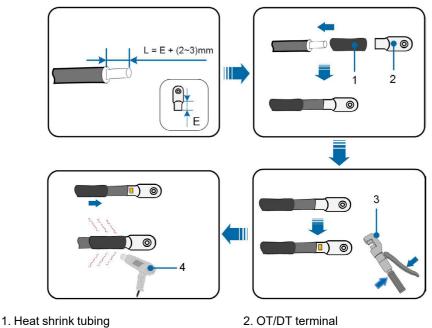
Item	Designation
А	PV string
В	Inverter
С	Grid
D	Monitoring device
E	AC circuit breaker

table 5-1 Cable Requirements

			Specification	
No.	Cable	Туре	Cable Diame-	Cross-sectional Area
			ter(mm)	(mm²)
		PV cable comply-		
1	DC cable	ing with 1,500V	6~9	4~6
		standard		
	Additional	Outdoor single-	The same as th	at of the PE wire in the AC
2	grounding	core copper wire	The same as that of the PE wire in the AC cable	
	cable	cable		

SUNGROW

			Specification	
No.	Cable	Туре	Cable Diame-	Cross-sectional Area
			ter(mm)	(mm²)
				L1,L2,L3,N wire (SG30CX,
				SG30CX-NI, SG33CX): 16
				~ 70
		Outdoor multicore copper or alumi- nium cable	20 ~ 50	L1,L2,L3,N wire (SG40CX):
3	AC cable			25 ~ 70
				L1,L2,L3,N wire (SG50CX,
				SG50CX-NI): 35 ~ 70
				PE wire: refer to "table 5-2
				PE Wire Requirements"
		Shielded twisted	4.5 ~ 18	
4	Communi-	pair (terminal		0.1 ~ 1.5
	cation	block)		
	cable	CAT-5 Ethernet ca-		
		ble (RJ45)		1


table 5-2 PE Wire Requirements

Phase Wire Cross Section S	PE Wire Cross Section	Note
16 < S≤35mm²	16mm ²	The specifications are valid only when
		the phase wire and PE wire use the
		same material. If otherwise, ensure that
S > 35 mm ²	S/2	the cross section of the PE wire produ-
		ces a conductance equivalent to that of
		the wire specified in the table.

Other sizes of grounding cables that meet local standards and safety regulations can also be used for grounding connections. But SUNGROW shall not be held liable for any damage caused.

5.4 Crimp OT/DT terminal

Crimp OT/DT terminal

3. Hydraulic pliers

4. Heat gun

Aluminum Cable Requirements

If an Aluminum cable is selected, use a copper to Aluminum adapter terminal to avoid direct contact between the copper bar and the Aluminum cable.

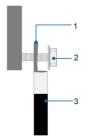


figure 5-2 Aluminum Cable Connection

1. Copper to Aluminum adapter terminal

2. Flange nut

3. Aluminum cable

NOTICE

Ensure that the selected terminal can directly contact with the copper bar. If there are any problems, contact the terminal manufacturer.

Ensure that the copper bar is not in direct contact with the aluminum wire. Otherwise, electrochemical corrosion may occur, impairing the reliability of electrical connection.

5.5 External Protective Grounding Connection

DANGER

Electric shock!

• Make sure that the grounding cable is connected reliably. Otherwise, it may cause electric shock.

WARNING

- Since the inverter is not equipped with a transformer, neither the negative electrode nor the positive electrode of the PV string can be grounded. Otherwise, the inverter will not operate normally.
- Connect the grounding terminal to the external protective grounding point before AC cable connection, PV string connection, and communication cable connection.
- The external protective grounding point provides a reliable ground connection. Do not use an improper grounding conductor for grounding, Otherwise, it may cause product damage or personal injury.
- Depending on Local Rules, please also ground the PV panel subconstruction to the same common grounding point (PE Bar) in addition to local lightning protection rules.

A WARNING

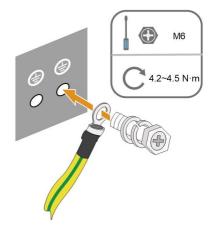
The external protective grounding terminal must meet at least one of the following requirements.

- The cross-sectional area of the grounding cable is not less than 10 mm² for copper wire or 16 mm² for aluminum wire. It is recommended that both the external protective grounding terminal and the AC side grounding terminal be reliably grounded.
- If the cross-sectional area of the grounding cable is less than 10 mm² for copper wire or 16 mm² for aluminum wire, ensure that both the external protective grounding terminal and the AC side grounding terminal are reliably grounded.

The grounding connection can be made by other means if they are in accordance with the local standards and regulations, and SUNGROW shall not be held liable for the possible consequences.

5.5.1 External Protective Grounding Requirements

All non-current carrying metal parts and device enclosures in the PV power system should be grounded, for example, brackets of PV modules and inverter enclosure.


When there is only one inverter in the PV system, connect the external protective grounding cable to a nearby grounding point.

When there are multiple inverters in the PV system, connect the external protective grounding terminals of all inverters and the grounding points of the PV module brackets to ensure equipotential connections to ground cables (according to the onsite conditions).

5.5.2 Connection Procedure

Step 1 Prepare the cable and OT/DT terminal, refer to "Crimp OT/DT terminal".

Step 2 Remove the screw on the grounding terminal and fasten the cable with a screwdriver.

Step 3 Apply paint to the grounding terminal to ensure corrosion resistance.

A

The grounding screws have been anchored to the side of the inverter before delivery, and do not need to be prepared.

There are two grounding terminals. Use one of them to ground the inverter.

- - End

5.6 AC Cable Connection

5.6.1 AC Side Requirements

Only with the permission of the local grid department, the inverter can be connected to the grid.

Before connecting the inverter to the grid, ensure the grid voltage and frequency comply with requirements, for which, refer to **"Technical Data"**. Otherwise, contact the electric power company for help.

AC Circuit Breaker

An independent circuit breaker or fuse should be installed on the output side of the inverter to ensure safe disconnection from the grid.

Inverter	Recommended rated voltage	Recommended rated current
SG30CX	_	63A
SG33CX		63A
SG40CX		80A
SG50CX	400V	100A
SG30CX-NI		63A
SG50CX-NI		100A

A WARNING

AC circuit breakers should be installed on the output side of the inverter and the grid side to ensure safe disconnection from the grid.

- Determine whether an AC circuit breaker with greater overcurrent capacity is required based on actual conditions.
- Do not connect any local load between the inverter and the AC circuit breaker.
- Multiple inverters cannot share one AC circuit breaker.

Residual Current Monitoring Device

With an integrated universal current-sensitive residual current monitoring unit included, the inverter will disconnect immediately from the mains power once a fault current with a value exceeding the limit is detected.

However if an external residual current device (RCD) (type A is recommended) is mandatory, the switch must be triggered at the residual current. RCD of other specifications can also be used according to local standard. The recommended residual current is as follows.

Inverter	Recommended residual current
SG30CX	330 mA
SG33CX	330 mA
SG40CX	400 mA
SG50CX	500 mA
SG30CX-NI	330 mA
SG50CX-NI	500 mA

Multiple Inverters in Parallel Connection

If multiple inverters are connected in parallel to the grid, ensure that the total number of parallel inverters does not exceed 30.

The inverter has not been tested to AS/NZS 4777.2:2020 for multiple inverter combinations.

MV Transformer

The MV transformer used together with the inverter should meet the following requirements:

• A distribution transformer can be used if it is designed for the typical cyclical loads of a PV system (there is load in the day and no load at night).

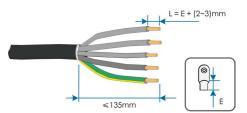
- A liquid-immersed type transformer or a dry type transformer can be used, and the shield winding is not a requisite.
- The line-to-line voltage on the LV side of the transformer should endure the output voltage of inverter. When the transformer is connected to the IT grid, to-ground withstanding voltage of the LV winding of the transformer, the LV side AC cables, and the LV side secondary equipment (including the relay protection device, detection & measuring device, and other related auxiliary devices) should not be lower than 1,100V.
- The line-to-line voltage on the HV side of the transformer should comply with the local power grid voltage.
- A transformer with a tap changer on the HV side is recommended in order to keep the voltage consistent with the grid voltage.
- At an ambient temperature of 45°C, the transformer can run in 1.1 times of load for long time.
- A transformer with a short-circuit impedance 6% (permissible tolerance: ±10%) is recommended.
- The voltage drop of system cable is no more than 3%.
- The DC component that the transformer can withstand is 1% of the fundamental current at rated power.
- For thermal rating, the load curve of the transformer and environment conditions should be taken into account.
- The apparent power of the inverter should never exceed the power of the transformer. The maximum AC current of all inverters connected in parallel must be taken into account. It is recommended that the total number of inverters that are connected to the grid not exceed 30.
- The transformer must be protected against overloading and short circuit.
- The transformer is an important part of grid-connected PV generation system. The fault tolerance capacity of the transformer should be taken into account at all times. The fault include: system short circuit, grounding fault, voltage drop, etc.
- Take ambient temperature, relative humidity, altitude, air quality, and other environmental conditions into account when selecting and installing the transformer.

5.6.2 Requirements for OT/DT Terminal

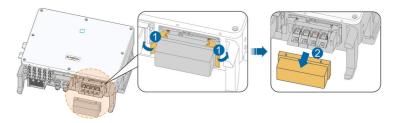
OT/DT terminals (not included in the delivery scope) are required for fixing AC cables to the terminal block. Purchase the OT/DT terminals according to the following requirements.

- Specification: M8;
- Dimensions: a≤30mm / 8.4mm≤b≤10.5mm / c≤16mm

5.6.3 Connection Procedure

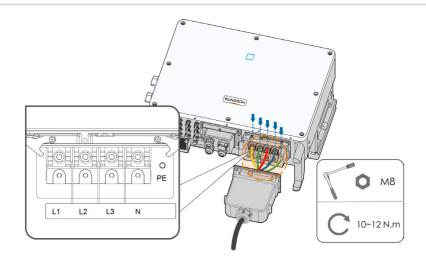

High voltage may be present in inverter!
Ensure all cables are voltage-free before electrical connection.
Do not connect the AC circuit breaker until all inverter electrical connections are completed.

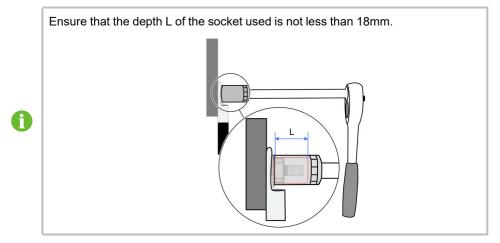
- Step 1 Disconnect the AC-side circuit breaker and prevent it from inadvertent reconnection.
- **Step 2** Take out the AC junction box and loosen the swivel nut. After removing the seals, select one or more appropriate seals for use in combination according to the cable outer diameter, by referring to the table below. Lead the cable through the swivel nut, seal, and junction box successively.


Outer diameter D(mm)	Seals
20~25	a+b+c+d
25~30	a+b+c
30~40	a+b
40~50	а

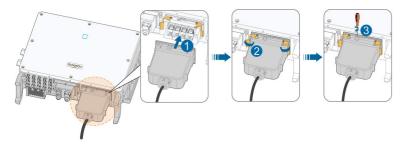
Step 3 Strip the protection layer and insulation layer by specific length, as described in the figure below.

Step 4 Make the cable and crimp OT/DT terminal, refer to " Crimp OT/DT terminal".

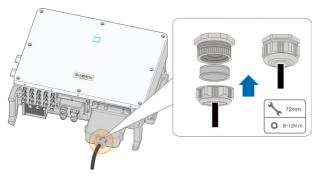

Step 5 Unfasten the buckle and remove the protective cap.



Step 6 Secure the wires to corresponding terminals.


NOTICE

Observe the terminal layout on the block. Do not connect the phase wires to "PE" terminal or PE wire to "N" terminal. Otherwise, unrecoverable damage to the inverter may follow.



Step 7 Secure the junction box, fasten the buckle, and secure it with supplied M4×10 screw.

Step 8 Gently pull the cable backwards to ensure firm connection, and fasten the swivel nut clockwise.

- - End

5.7 DC Cable Connection

DANGER

The PV string will generate lethal high voltage when exposed to sunlight.

Respect all safety instructions listed in relevant documents about PV strings.

WARNING

- Make sure the PV array is well insulated to ground before connecting it to the inverter.
- Make sure the maximum DC voltage and the maximum short circuit current of any string never exceed inverter permitted values specified in "Technical Data".
- Check the positive and negative polarity of the PV strings, and connect the PV connectors to corresponding terminals only after ensuring polarity correctness.
- During the installation and operation of the inverter, please ensure that the positive or negative electrodes of PV strings do not short-circuit to the ground. Otherwise, an AC or DC short-circuit may occur, resulting in equipment damage. The damage caused by this is not covered by the warranty.
- Electric arc or contactor over-temperature may occur if the DC connectors are not firmly in place, and the loss caused is not covered by the warranty.
- If the DC input cables are reversely connected or the positive and negative terminals of different MPPT are shorted to ground at the same time, while the DC switch is in the "ON" position, do not operate immediately. Otherwise, the inverter may be damaged. Please turn the DC switch to "OFF" and remove the DC connector to adjust the polarity of the strings when the string current is lower than 0.5 A.
- Use the DC connectors supplied with the product for DC cable connection. Using incompatible DC connectors may result in serious consequences, and the device damage is not covered under warranty.
- Inverters do not support full parallel connection of strings (Full parallel connection refers to a connection method in that strings are connected in parallel and then connected to the inverter separately).
- Do not connect one PV string to multiple inverters. Otherwise, the inverters may be damaged.

NOTICE

The following requirements about PV string connection must be met. Otherwise, it may cause irreversible damage to the inverter, which is not covered by the warranty.

- Mixed use of PV modules of different brands or models in one MPPT circuit, or PV modules of different orientation or inclination in a string may not damage inverter, but will cause system bad performance!
- The inverter enters standby state when the input voltage ranges between 1,000 V and 1,100 V. The inverter returns to running state once the voltage returns to the MPPT operating voltage range, namely, 200 V to 1,000 V.

NOTICE

Note the following items when laying out cables on site:

- The axial tension on PV connectors must not exceed 80 N. Avoid axial cable stress on the connector for a long time during field wiring.
- Radial stress or torque must not be generated on PV connectors. It may cause the connector waterproof failure and reduce connector reliability.
- Leave at least 50 mm of slack to avoid the external force generated by the cable bending affecting the waterproof performance.
- Refer to the specifications provided by the cable manufacturer for the minimum cable bending radius. If the required bending radius is less than 50 mm, reserve a bending radius of 50 mm. If the required bending radius is greater than 50 mm, reserve the required minimum bending radius during wiring.

5.7.1 PV Input Configuration

- As shown in the figure below, the inverter is provided with multiple PV inputs: PV inputs 1~n (SG30CX/SG30CX-NI/SG33CX/SG40CX/SG50CX/SG50CX-NI: n=3/3/3/4/5/5); and each PV input is designed with an MPP tracker.
- Each PV input operates independently and has its own MPPT. In this way, string structures of each PV input may differ from each other, including PV module type, number of PV modules in each string, angle of tilt, and installation orientation.
- Each PV input area includes two DC inputs DC1 and DC2. For the best use of DC power, DC1 and DC2 should be the same in PV string structure, including the type, number, tilt, and orientation of the PV modules.

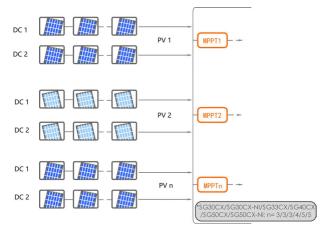


figure 5-3 PV Input Configuratinon

Prior to connecting the inverter to PV inputs, the specifications in the following table should be met:

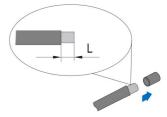
Туре	Open-circuit Voltage	Max. Current for Input Connector	
1300	Limit		
SG30/33/40/50CX	1100 V	30 A	
SG30/50CX-NI	1100 V	30 A	

5.7.2 Assembling PV Connectors

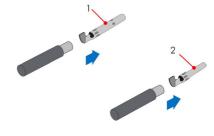
A DANGER

High voltage may be present in the inverter!

- Ensure all cables are voltage-free before performing electrical operations.
- Do not connect the AC circuit breaker before finishing electrical connection.



- Use MC4 DC terminals if the maximum input voltage is no more than 1,000 V.
- Use MC4-Evo2 DC terminals if the maximum input voltage is greater than 1,000 V. To purchase the MC4-Evo2 DC terminals, contact SUNGROW.
- Select appropriate DC terminals as required above. Otherwise, SUNGROW shall be held no liability for the damage caused.



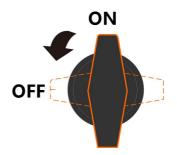
To ensure IP66 protection, use only the supplied connector.

Step 1 Strip 7 mm–8 mm of the insulation from each PV cable.

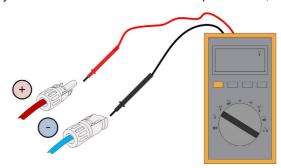
Step 2 Assemble the cable ends with the crimping pliers.

- 1: Positive crimp contact
- 2: Negative crimp contact

Step 3 Lead the cable through the cable gland, and insert the crimp contact into the insulator until it snaps into place. Gently pull the cable backward to ensure firm connection. Tighten the cable gland and the insulator (torque 2.5 N.m to 3 N.m).

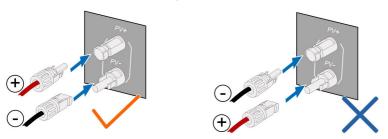

Step 4 Check for polarity correctness.

- - End


5.7.3 Installing PV Connector

Step 1 Rotate the DC switch to "OFF" position.

The SG30/50CX-NI doesn't have a DC switch.


Step 2 Check the cable connection of the PV string for polarity correctness and ensure that the open circuit voltage in any case does not exceed the inverter input limit of 1,100V.

NOTICE

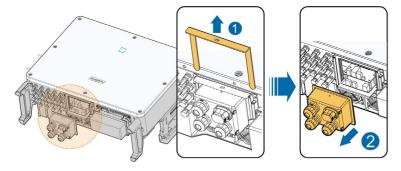
The multimeter must have a DC voltage range of at least 1100 V. If the voltage is a negative value, the DC input polarity is incorrect. Please correct the DC input polarity. If the voltage is greater than 1100 V, too many PV modules are configured to the same string. Please remove some PV modules.

Step 3 Connect the PV connectors to corresponding terminals until there is an audible click.

Step 4 Follow the foregoing steps to connect PV connectors of other PV strings.

Step 5 Seal any unused PV terminal with a terminal cap.

SUNGROW inverters cannot be used with third-party optimizers.

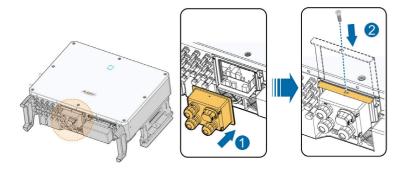

If the PV string is equipped with the optimizer, please refer to the optimizer manual for electrical connections and make sure that the polarity of the optimizer cables is correct.

--End

5.8 Communication Junction Box

Remove the Junction Box

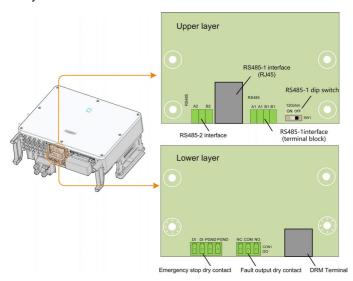
Pull out the pin and keep it properly, remove the junction box.



The pin removed is a required accessory for fixing the junction box. Store it properly and protect it against missing or deformation.

Install the Junction Box

Remount the wiring box and press it tightly, insert the pin, and secure the wiring box with the supplied M4×25 screw.


1

During installation, firmly press the junction box to ensure that the pin can be inserted successfully.

Never hit the pin with a heavy object, such a hammer. Otherwise, it will be irrecoverably damaged.

5.9 Communication Wiring Board

The communication board of the inverter includes two layers. The upper layer communication board mainly includes RS485 communication interfaces while the lower layer communication board mainly includes DI/DO interface and DRM interface.

5.10 RS485 Connection

5.10.1 Interface Description

As shown in the Figure below, the inverter is equipped with three RS485 communication interfaces and one dip switch.

All three interfaces can be connected to a data acquisition device (Data Logger), to achieve data exchange with PC or other monitoring devices.

The RS485-1 crimp and the RJ45 interface can be applied to applications where multiple inverters communicate in a daisy-chain form.

A 120 Ω resistor can be connected in parallel between RS485-1 A/B pins by configuring the dip switch.

NOTICE

RS485-1 crimp interface and RJ45 interface serve as the same function with different wiring manner.

5.10.2 RS485 Communication System

Single-inverter Communication System

In case of a single inverter, communication cable connection requires only one RS485 cable.

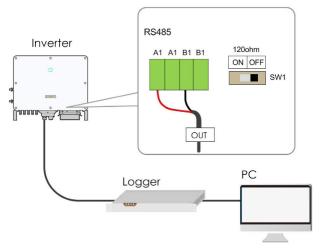


figure 5-4 Single-inverter Connection

Multi-inverter Communication System

In case of multiple inverters, all the inverters can be connected via RS485 cables in the daisy chain manner.

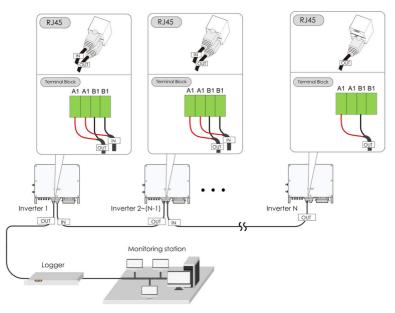


figure 5-5 Multi-inverter Connection

When more than 15 inverters are connected to the same daisy chain, in order to ensure the communication quality, the Logger at the first end of the daisy chain needs to be equipped with a terminal resistor of 120Ω , the inverter at the last end needs to be equipped with a RS485-dip switch (SW1), and the shielding layer of the communication cable should be single-point grounded.

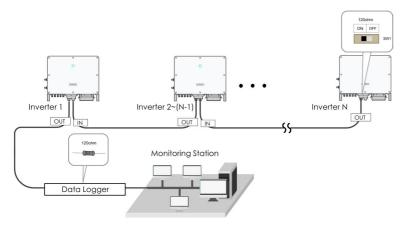


figure 5-6 Configuration of Dip Switch (N≥15)

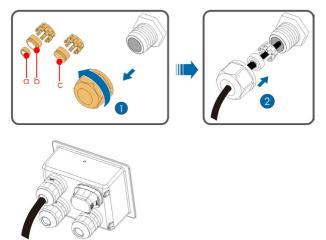
The length of the RS485 cable and twisted pair cable should be no longer than 1,200m.

If multiple inverters are connected to the data logger, the number of permissible daisy chains and the number of devices allowed to be connected should meet the requirements (refer to the user manual for the data logger).

SUNGROW

5.10.3 Connection Procedure(Terminal Block)

RS485 communication cables should be shielded twisted pair cables or shielded twisted pair Ethernet cables.


There are three communication terminals, and the silkscreen marks are COM1/ COM2/COM3. Please choose according to the actual situation.

Step 1 Remove the communication junction box, see" Remove the Junction Box".

Step 2 Strip the protection layer and insulation layer by appropriate length.

Step 3 Loosen the swivel nut of the junction box and select an appropriate seal according to cable outer diameter. Lead the cable through the swivel nut, seal, and junction box successively.

Outer Diameter D(mm)	Seal
4.5 ~ 6	C
6 ~ 12	a + b
12 ~ 18	b

-

Step 5 Insert the terminal base into the corresponding terminal.

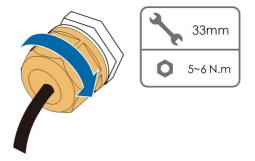
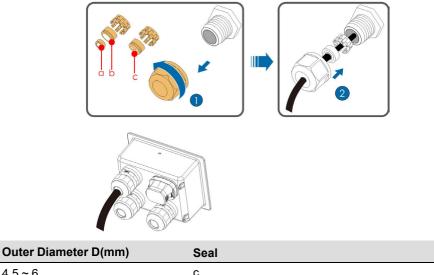

No	Definition	
1	RS485 A IN, RS485A differential signal+	
2	RS485 A OUT, RS485A differential signal+	
3	RS485 B IN, RS485B differential signal-	
4	RS485 B OUT, RS485B differential signal-	

table 5-3 Terminal definition

Step 6 If other wiring operations need to be performed on the communication board, finish the wiring operations before performing the following steps. If otherwise, continue to perform the following steps.

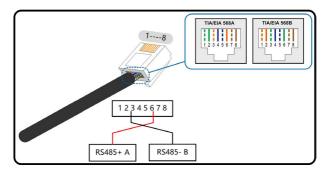
Step 7 Install the junction box, see "Install the Junction Box".

Step 8 Pull the cable gently to make sure it is secured, tighten the swivel nut clockwise.

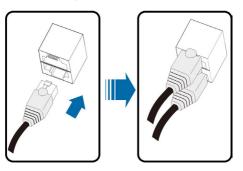


- - End

5.10.4 Connection Procedure (RJ45 Ethernet Port)

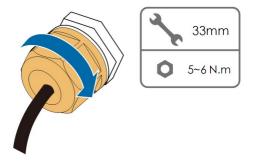

Step 1 Remove the communication junction box, see "Remove the Junction Box".

Step 2 Loosen the swivel nut of the junction box and select an appropriate seal according to cable outer diameter. Lead the cable through the swivel nut, seal, and junction box successively.



4.5~6	С	
6~12	a + b	
12 ~ 18	b	

Step 3 Strip the insulation layer of the Ethernet cable with a wire stripper, and insert the signal wires to the RJ45 connector(Pin 3 and Pin 6 are for communication connection). Crimp the RJ45 connector with a crimping tool.


Step 4 Insert the RJ45 connector to the RJ45 jack.

Step 5 If other wiring operations need to be performed on the communication board, finish the wiring operations before performing the following steps. If otherwise, continue to perform the following steps.

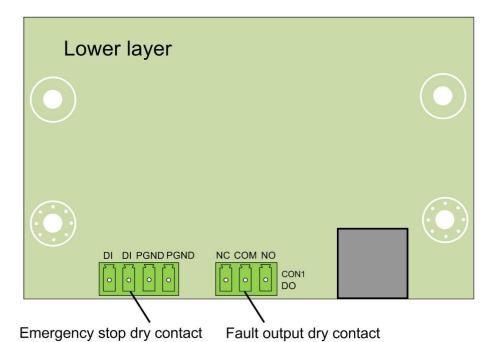
Step 6 Install the junction box, see "Install the Junction Box".

Step 7 Pull the cable gently to make sure it is secured, tighten the swivel nut clockwise.

- - End

5.11 Dry Contact Connection

NOTICE


Dry contact cables require a cross section of 1 mm^2 to 1.5 mm^2 . The connection procedure of the dry contact is the same as that of the RS485 terminal block.

5.11.1 Dry Contact Function

The configuration circuit board is provided with fault output dry contact and emergency stop dry contact, as shown in the figure below.

Connection method of the dry contacts is similar to that of the RS485 terminal block.

SUNGROW

DO terminal (fault output dry contact): The relay can be set to output fault alarms, and user can configure it to be a normally open contact (COM & NO) or a normally closed contact (COM & NC).

The relay is initially at the NC contact, and it will trip to another contact when a fault occurs. When alarm occurs, signal status change will not be triggered.

Use LED indicators or other equipment to indicate whether the inverter is in the faulty state. The following Figures show the typical applications of normal open contact and normaliy closed contact:

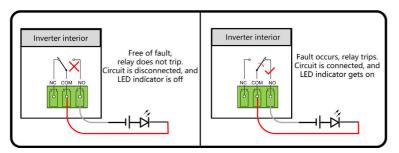


figure 5-7 Normally open contact

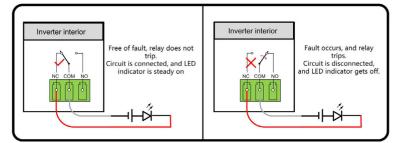


figure 5-8 Normally closed contact

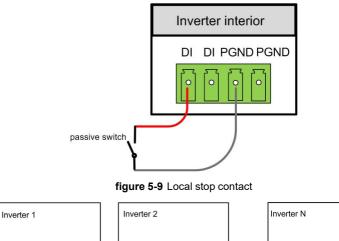
Devices connected to the relay should comply with related requirements:

AC-Side Requirements	DC-Side Requirements
Max. voltage: 250 Vac	Max. voltage: 30Vdc
Max. current: 5A	Max. current: 5A

DI terminal (emergency stop dry contact): the dry contact can be configured to be an emergency stop contact.

When the DI contact and GND contact are shorted by external controlled switch (The external switch can be configured as normally open contact or normally closed contact), the inverter will immediately stop.

NS terminal: NS Protection is currently used for German market. For plant sized more than 30kVA, inverter NS Protection terminals could be used in daisy chain to external NS Protection Relay to realize emergency stop when NS Protection Relay change its dry contact status due to the grid abnormal running status.


NS Protection (including Passive Valid) can be set. When NS Protection is enabled on the iSolarCloud, the inverters will operate normally when DI contact and GND contact are shorted by external controlled switch, and the inverters will emergently stop when DI contact and GND contact are disconnected.

The dry contacts only support passive switch signal input.

The following figure shows the typical application of local stop dry contact.

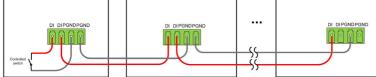
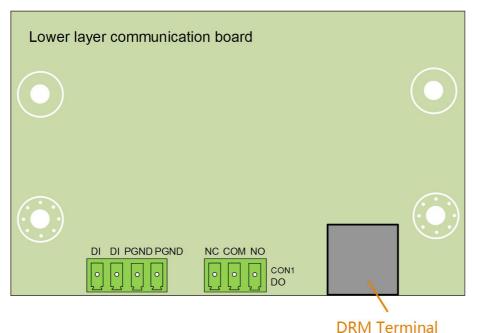


figure 5-10 Daisy chain topology

When wiring DI dry contacts, ensure that the maximum wiring distance meet the requirements in "10.2 Wring Distance of DI Dry Contact".


5.11.2 Wiring Procedure

Refer to the wiring of terminal block described in chapter"5.10.3 Connection Procedure(Terminal Block)" to implement fault output, emergency shutdown and NS protection. For NS protection(including passive valid), enable the function on iSolarCloud, refer to "7.8.2 Operation Parameters".

5.12 DRM Connection (For Countries "AU" and "NZ")

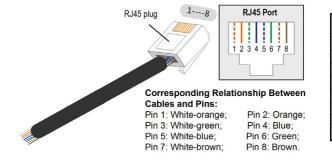
5.12.1 DRM Function

The inverter supports the demand response modes as specified in the standard AS/NZS 4777. The inverter has integrated a terminal for connecting to a DRED. After the connection, the method of asserting DRMs as specified in the follow table.

The mode $\ensuremath{\mathsf{DRM0}}$ is supported by the inverter.

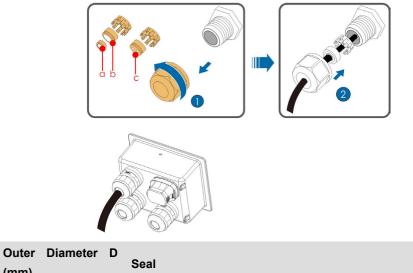
table 5-4 Method of Asserting DRMs

Mode	Method of Asserting	
	Asserted by shorting pins 5 and 6	
DRM0	Asserted when the impedance between pins 5 and 6 is detected to be	
	above 20kΩ	

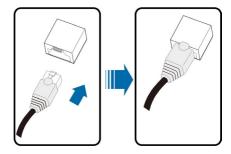

Enable the DRM function through the iSolarCloud APP. If there are any problems, contact your distributor first. If the problem persists, contact SUNGROW. The DRM function is only applicable to devices for Australia and New Zealand.

5.12.2 Connection Procedure

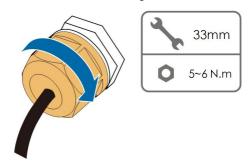
i


Step 1 Remove the communication junction box, see" Remove the Junction Box".

Step 2 Strip the insulation layer of the Ethernet cable with a wire stripper, and insert the signal wires to the RJ45 connector. Crimp the RJ45 connector with a crimping tool.


Pin	Assignment for inverters capable of both charging and discharging
1	DRM 1/5
2	DRM 2/6
3	DRM 3/7
4	DRM 4/8
5	RefGen
6	Com/DRM0
7	V+
8	V-

Step 3 Loosen the swivel nut and select an appropriate seal according to cable outer diameter. Lead the cable through the swivel nut, and seal successively.


(mm)	Seal	
4.5~6	С	
6~12	a + b	
12 ~ 18	b	

Step 4 Insert the RJ45 connector to the RJ45 jack.

Step 5 If other wiring operations need to be performed on the communication board, finish the wiring operations before performing the following steps. If otherwise, continue to perform the following steps.

Step 6 Install the junction box, see "Install the Junction Box".

Step 7 Pull the cable gently to make sure it is secured, tighten the swivel nut clockwise.

- - End

5.13 Communication Module Connection (optional)

Connect the communication module produced by SUNGROW to the communication accessory port. After successful connection, information such as power generation and running state of the inverter can be viewed via the App on the phone.

*The image shown here is for reference only. The actual product you receive may differ.

NOTICE

Once the communication module is in use, do not connect the inverter to a 3rd party data logger at the same time via RS485.

6

For details on module installation and configuration, refer to the manual delivered together with the module.

6 Commissioning

6.1 Inspection Before Commissioning

Check the following items before starting the inverter:

- All equipment has been reliably installed.
- DC switch(es) and AC circuit breaker are in the "OFF" position.
- The ground cable is properly and reliably connected.
- The AC cable is properly and reliably connected.
- The DC cable is properly and reliably connected.
- The communication cable is properly and reliably connected.
- The vacant terminals are sealed.
- No foreign items, such as tools, are left on the top of the machine or in the junction box (if there is).
- The AC circuit breaker is selected in accordance with the requirements of this manual and local standards.
- All warning signs & labels are intact and legible.

6.2 Commissioning Procedure

If all of the items mentioned above meet the requirements, proceed as follows to start up the inverter for the first time.

Step 1 Rotate the DC switch(if there is) of the inverter to "ON" position.

Step 2 Connect the AC switch or circuit breaker between the inverter and the grid.

NOTICE

- Strictly follow the preceding sequence. Otherwise, the product may be damaged, and the loss caused is not covered by the warranty.
- If the DC side is powered up while the AC side is not, the inverter indicator may turn red, and the inverter will report a fault named "Grid Power Outage" (the fault information can be viewed on the iSolarCloud App, see "Records" for details). The fault is automatically cleared when the AC circuit breaker between the inverter and the grid is closed.
- Before closing the AC circuit breaker between the inverter and the power grid, use a multimeter that is set to the AC gear to ensure that the AC voltage is within the specified range. Otherwise, the inverter may be damaged.

- Step 3 Connect the DC switch(if there is) between the inverter and the PV string.
- Step 4 Set initial protection parameters via the iSolarCloud App. For details, please refer to "7.2 Installing App", and "7.4.2 Login Procedure". If the irradiation and grid conditions meet requirements, the inverter will normally operate.
- Step 5 Observe the LED indicator to ensure that the inverter operates normally. Refer to "2.4 LED Indicator" for details.

WARNING

It is strictly forbidden to close the DC switch (if there is) if the inverter is in gridconnected status. Otherwise, the inverter may be damaged due to the lack of insulation impedance detection, and the loss caused is not covered by the warranty.

- - End

7 iSolarCloud App

7.1 Brief Introduction

The iSolarCloud App can establish communication connection to the inverter via the Bluetooth, thereby achieving near-end maintenance on the inverter. Users can use the App to view basic information, alarms, and events, set parameters, or download logs, etc. *In case the communication module Eye, WiFi or WiNet-S is available, the iSolarCloud App can also establish communication connection to the inverter via the mobile data or WiFi, thereby achieving remote maintenance on the inverter.

> This manual describes only how to achieve near-end maintenance via the Bluetooth connection. For remote maintenance through the Eye, WiFi or WiNet-S, refer to the related manuals in the delivery scope.

> • Screenshots in this manual are based on the Android system V2.1.6 , and the actual interfaces may differ.

7.2 Installing App

Ħ

Method 1

Download and install the App through the following application stores:

- MyApp (Android, mainland China users)
- Google Play (Android, users other than mainland China ones)
- App Store (iOS)

Method 2

Scan the following QR code to download and install the App according to the prompt information.

The App icon appears on the home screen after installation.

7.3 Function Overview

The App provides parameter viewing and setting functions, as shown in the following figure.

figure 7-1 App Function Tree Map

7.4 Login

7.4.1 Requirements

The following requirements should be met:

- The AC or DC side of the inverter is powered-on.
- The mobile phone is within 5 meters away from the inverter and there are no obstructions in between.
- The Bluetooth function of the mobile phone is enabled.

The inverter can only pair with one phone at a time through Bluetooth.

7.4.2 Login Procedure

Step 1 Open the App to enter the login page, tap Local Access at the bottom of the page to go to the next page.

A

- **Step 2** Establish the Bluetooth connection by either of the two following ways. If the LED indicator flashes blue, the connection is successfully established.
 - Scan the QR code on the side of the inverter for Bluetooth connection.
 - Tap "Manual connection" and select "Others" at the bottom of the page, the Bluetooth search page will automatically pop up, and select the inverter to be connected according to the SN on the nameplate on the side of the inverter body.

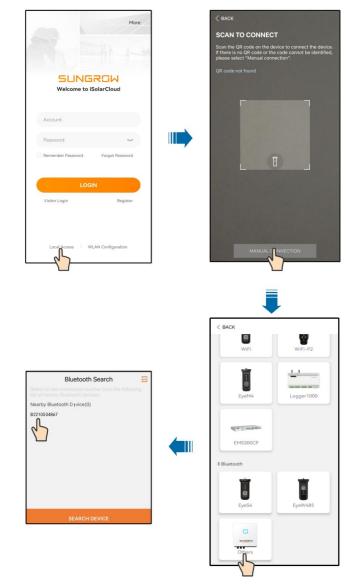


figure 7-2 Bluetooth Connection

Step 3 Enter the identity verification interface after the Bluetooth connection is established.

	✓ B2210504867 ¥
Account	
user	
Password	
	7
🔽 Remember Me	

figure 7-3 Login

A

The Account is "user", and the initial password is "pw1111" or "111111" which should be changed for the consideration of account security.

To set inverter parameters related to grid protection and grid support, contact SUNGROW to obtain the advanced account and corresponding password.

Step 4 If the inverter is not initialized, you will enter the quick setting interface of initializing protection parameter. Tap **Country/Region** to select the correct country, as shown in the following figure.

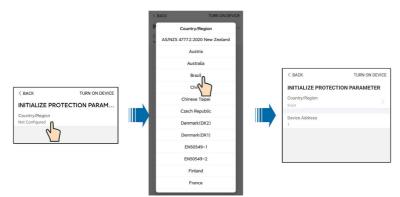


figure 7-4 Initialization Country/Region

NOTICE

A

Reset the protection parameters if the country setting is incorrect. Otherwise, a fault may occur.

In the European region, such as Sweden, Norway, Hungary, Portugal, Romania, Greece, Ukraine etc. whose grid code complies with EN50549, select the parameter EN50549_1 (LV grid- connection) or EN50549_2 (MV grid-connection) with proper manual settings.

In the Brazilian region, set the country code as "Brazil". Selecting "Brazil_230" or "Brazil_240" will cause setting failure.

For SG30CX, set the grid code as EN50549 in the Ukraine region and apply manual settings for country code compliance. Step 5 When the country is set to Australia, additionally set the applicable network service provider and then the grid type.Tap **Power Company** to select the correct power company.

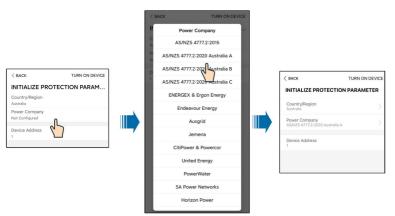


figure 7-5 Initialization Power Company

The image shown here is for reference only. Refer to the actual interface for the supported network service providers.

Network Service Provider	Grid Type
AS/NZS 4777.2:2015	/
AS/NZS 4777.2:2020 Australia A	/
AS/NZS 4777.2:2020 Australia B	1
AS/NZS 4777.2:2020 Australia C	1
ENERGEX & Ergon Energy	 STNW1170: single phase < 10 kVA & three phase < 30 kVA
	• STNW1174 :30 kVA < PN ≤ 1500 kVA
Endeavour Energy	MDI 0043
Ausgrid	NS194
Jemena	 ≤ 10kVA per phase (or 30 kVA per three phase)
	• ELE GU 0014: 30-200kVA
CitiPower & Powercor	 ≤ 5 kVA for single-phase & 30 kVA for three-phase
	 > 30 kVA three-phase
United Energy	 UE-ST-2008.1: ≤ 10 kW for single- phase & 30 kW for three-phase
	• UE-ST-2008.2: > 30 kVA three-phase
PowerWater	Embedded Generation Notice Photovoltaic
	Systems:2020

Network Service Provider	Grid Type
SA Power Networks	 TS129-2019: < 10 kW for single-phase & 30 kW for three-phase
	• TS130-2017: > 30 kW & ≤ 200 kW
	• TS131-2018: > 200 kW
Horizon Power	 HPC-9DJ-13-0001-2019: ≤ 10 kVA for single-phase & 30 kVA for three-phase
	• HPC-9DJ-13-0002-2019: > 30 kVA & ≤1 MVA
westernpower	EDM # 33612889-2019
AusNet Services	Basic Micro Embedded Generation:2020

For compliance with AS/NZS 4777.2:2020, please select from Australia A/B/C. Please contact your electricity grid operator for which region to use.

- **Step 6** After finishing the settings, tap TUNR ON DEVICE at the upper right corner and the device will be initialized. The App will send start instructions and the device will start and operate.
- **Step 7** After initialization settings, the App will return automatically to the home page.

- - End

7.5 Home

After login, the home page is as follows:

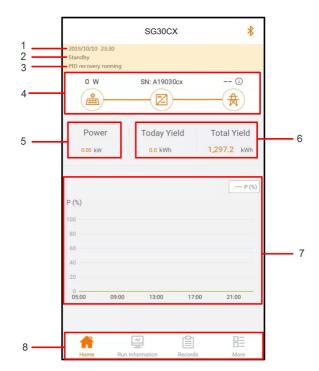


figure 7-6 Home Page

table 7-2 Home Page Description

No.	Designation	Description
1	Date and time	System date and time of the inverter
	les conten etete	Present operation state of the inverter. For details, refer to
2 Inverter state		"table 7-3 Description of Inverter State".
•	DID function state	Present state of the PID function. For details, refer to "table
3	PID function state	7-4 Description of PID State"
		Display the PV power generation power, feed-in power, etc.
4	Power flow chart	The line with an arrow indicates energy flow between con-
4	Tower now chart	nected devices, and the arrow pointing indicates energy
		flow direction.
5	Power generation	Today power yield and accumulative power yield of the
<u> </u>	· · · · · · · · · · · · · · · · · · ·	inverter
6	Real-time power	Output power of the inverter
		Curve showing change of power between 5 am and 23 pm
7		every day
7	Power curve	(Each point on the curve represents the percentage of
		present inverter power to rated power)
0	Navigation bar	Including "Home", "Run Information", "Records", and
8	I vavigation bai	"More"

SUNGROW

State	Description		
	After being energized, inverter tracks the PV arrays' maximum power		
Run	point (MPP) and converts the DC power into AC power. This is the nor-		
	mal operation mode.		
Stop	Inverter is stopped.		
Press to Shut	Inverter will stop operation by tapping "Stop" via app. In this way, inverter		
Down	internal DSP stops. Restart the inverter via app if needed.		
Standby	Inverter enters standby mode when DC side input is insufficient. In this		
	mode inverter will wait within the standby duration.		
Initial standby	The inverter is in the initial power-on standby state.		
Starting up	The inverter is initializing and synchronizing with the grid.		
Warn run	Warning information is detected.		
Derating	The inverter derates actively due to environmental factors such as tem-		
running	perature or altitude		
Dispatch	The inverter runs according to the scheduling instructions received from		
Running	the monitoring background		
	If a fault occurs, inverter will automatically stop operation, and the AC re-		
Shut down	lay acts. The fault information will be displayed on the app. Once the		
Shut down	fault is removed in recovery time, inverter will automatically resume		
	running.		

table 7-3 Description of Inverter State

table 7-4 Description of PID State

State	Description	
PID recovery	The inverters perform PID recovery actively.	
running	The inverters perform FID recovery actively.	
PID abnormity	It is detected that the ISO impedance is abnormal or the PID cannot	
	work normally after the PID function is enabled.	

If the inverter is running abnormally, the alarm or fault icon will be displayed in the lower right corner of the inverter icon in power flow chart. The user can tap this icon to enter the alarm or fault interface to view detailed information and corrective measures.

7.6 Run Information

Tap **Run Information** on the navigation bar to enter the screen showing running information, slide the screen upwards to view all detailed information.

Classifica- tion	Parameter	Description	
PV	String n Voltage	The input voltage of the n th string	
Information	String n current	The input current of the nth string	
	Total On-grid Run- ning Time	1	
	Daily On-grid Run- ning Time	1	
Inverter Information	Negative Voltage to Ground	Inverter DC side negative to ground voltage value	
	Bus Voltage	Voltage between the positive and negative poles	
		of the DC side of the inverter	
	Internal Air Temperature	/	
	Array Insulation	Insulation resistance value of the input side to the	
	Resistance	protection ground	
	Country Information	/	
	Power Limitation Mode	/	
	Reactive Power Mode	1	
	Total DC Power	DC side total input power	
Input	MPPT x Voltage	The input voltage of the x th MPPT	
	MPPT x Current	The input current of the xth MPPT	
	Daily Yield	1	
	Monthly Yield	/	
	Annual Yield	1	
	Total Active Power	Current active power value of the inverter	
	Total Reactive Power	Current reactive power value of the inverter	
.	Total Apparent Power	Current apparent power value of the inverter	
Output	Total Power Factor	Power factor of the AC side of the inverter	
	Gird Frenquency	Frequency of the AC side of the inverter	
	A-B Line Voltage	_ Line voltage	
	B-C Line Voltage		
	C-A Line Voltage	-	
	Phase A Current Phase B Current	- Phase current	

table 7-5 Run Information

Classifica- tion	Parameter	Description
	Phase C Current	

7.7 View Records

Tap **Records** on the navigation bar to enter the interface showing event records, as shown in the following figure.

figure 7-7 Records

Fault Alarm Record

Tap Fault Alarm Record to enter the interface, as shown in the following figure.

figure 7-8 Fault Alarm Record

Tap is to select a time segment and view corresponding records.

The inverter can record up to 400 latest entries.

Select one of the records in the list and tap the record to view the detailed fault information as shown in following figure.

< BACK	
GRID POWER OUTAGE	
Alarm Level: Important	
Occurrence Time: 2020-05-06 10:23:32	
Alarm ID: 10	
Repair Advice	
Generally, the device is reconnected to the grid after the grid recovers to normal. If the fault occurs repeatedly: 1.Check if the grid power supply is normal; 2.Check if AC cables are all firmly connected. 3.Check if AC cables are connected to the correct terminals (with or without live line and reverse connection). 4.If the fault still exists, Please contact customer service center of sungrow power.	

figure 7-9 Detailed Fault Alarm Information

Yield Record

Tap **Yield Record** to enter the interface showing daily power generation as shown in the following figure.

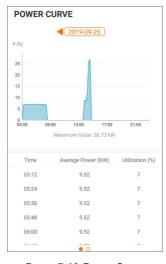


figure 7-10 Power Curve

The App displays power generation records in a variety of forms, including daily power generation graph, monthly power generation histogram, annual power generation histogram.

table 7-	6 Yield	Record	Explanation
----------	---------	--------	-------------

Parameter	Description	
	Shows the power output from 5 am to 23 pm in a single day. Each	
Power curve	point on the curve represents the percentage of present inverter	
	power to rated power.	
Daily yield	Shows the power output every day in the present month.	
histogram		

SUNGROW

Parameter	Description		
Monthly yield	Shows the newer output every menth in a year		
histogram	Shows the power output every month in a year.		
Annual yield	Shows the power output every year.		
histogram			

Tap the time bar on the top of the interface to select a time segment and view the corresponding power curve.

Swipe left to check the power yields histogram.

Event Record

Tap Event Record to view event record list.

Click 🔲 to select a time segment and view corresponding records.

The inverter can record up to 400 latest entries.

7.8 More

Tap **More** on the navigation bar to enter the corresponding interface, as shown in the following figure.



figure 7-11 More

7.8.1 System Parameters

Tap "**Settings**→**System Parameters**" to enter the corresponding interface, as shown in the following figure.

< BACK	
SYSTEM PAR	RAMETERS
Boot Shutdown Boot	
Date Setting 2021–11–11	
Time Setting 14:19:04	
Software Versior	11 LVPLA
Software Version	12

figure 7-12 System Parameters

* The image shown here is for reference only.

Boot/Shutdown

Tap Boot/Shutdown to send the boot/shutdown instruction to the inverter.

For Australia and New Zealand, when the DRM state is DRM0, the "Boot" option will be prohibited.

Date Setting/Time Setting

The correct system time is very important. Wrong system time will directly affect the data logging and power generation value. The clock is in 24-hour format.

Software Version

Version information of the current firmware.

7.8.2 Operation Parameters

Running Time

Tap "Settings \rightarrow Operation Parameters \rightarrow Running Time" to enter the corresponding interface.

figure 7-13 Running Time

PID Parameters

Tap "Settings \rightarrow Operation Parameters \rightarrow PID Parameters" to enter the corresponding interface.

< BACK	
PID PARAMETERS	
PID Recovery	
Clear PID Alarm	
PID Scheme Apply Positive Voltage	

figure 7-14 PID Parameters

table 7-7 PID Parameter Description

Parameter	Description
	Enabling/Disable the PID night recovery function. Once enabled, it
PID Recovery	works between 22:00 pm and 5:00 am by default.
	If ISO impedance abnormality or PID function exception is de-
	tected during running of the PID function, the inverter reports a
Clear PID alarm	PID abnormity and reminds the user to take corresponding meas-
	ures. Clear the alarm report via this parameter once the problems
	are handled.
	Apply negative voltage when the inverter is connected to negative
PID Scheme	voltage panel.
	Apply positive voltage when the inverter is connected to positive
	voltage panel.

After the PID night recovery function is enabled, the fault indicator on the inverter front panel turns green.

AFCI Parameters(Optional)

Tap "Settings \rightarrow Operation Parameters \rightarrow AFCI Parameters" to enter the corresponding screen, on which you can set "AFCI Parameters".

< BACK	
AFCI PARAMETERS	
AFCI Self-test	
AFCI Activation	
Clear AFCI Alarm	

figure 7-15 AFCI Setting

NS Protection(Passive Valid)

Tap "Settings \rightarrow Operation Parameters \rightarrow Regular Parameters" to enter the corresponding screen, on which you can set the "NS Protection(Passive Valid)".

< BACK	
REGULAR PARAMETERS	
NS Protection(Passive Valid)	

figure 7-16 NS Protection(Passive Valid)

7.8.3 Power Regulation Parameters

Active Power Regulation

Tap "Settings \rightarrow Power Regulation Parameters \rightarrow Active Power Regulation" to enter the screen, as shown in the following figure.

< BACK	
ACTIVE POWER REGULATION	
Active Power Soft Start after Fault	\bigcirc
Active Power Soft Start Time after Fault 60 s	
Active Power Gradient Control	\bigcirc
Active Power Decline Gradient 10 %/min	
Active Power Rising Gradient	
Active Power Setting Persistence	\bigcirc
Active Power Limit	
Active Power Limit Ratio	
Shutdown When Active Power Limit to 0%	
100% Scheduling to Achieve Active Overload	0

figure 7-17 Active Power Regulation

table 7-8 Active Power Regulation

Parameter	Definition/Setting Description	Range
Active power soft start after fault	The switch for enabling/dis- abling the soft start function after a fault occurs.	Enable/Disable
Active power soft start time after fault	Time that the soft start takes to raise the power from 0 to 100% rated power.	1s~1200s
Active power gradient control	Switch for enabling/disabling the active power rate settable function.	Enable/Disable
Active power decline gradient	The decline rate of inverter ac- tive power per minute.	1%/min~6000%/min

Parameter	Definition/Setting Description	Range
Active power rising gradient	The rise rate of inverter active power per minute.	1%/min~6000%/min
Active power setting persistence	Switch for enabling/disabling the function of saving output limited power.	Enable/Disable
Active power limit	The switch for limiting output power.	Enable/Disable
Active power limit ratio	The ratio of limiting output power to rated power in percentage.	0%~110%
Shutdown when active power limit to 0%	Switch used to determine whether the inverter is in stop state when the limited power reaches 0.	Enable/Disable

Reactive Power Regulation

Tap "Settings \rightarrow Power Regulation Parameters \rightarrow Reactive Power Regulation" to enter the screen, as shown in the following figure.

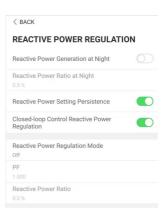


figure 7-18 Reactive Power Regulation

Parameter	Definition/Setting Description	Range	
Reactive power genera- tion at night	Switch for enabling/disabling Q at night function.	Enable/Disable	
Reactive power ratio at night	Reactive power ratio set for the Q at night function.	-100%~0%/ 0%~100%	
Reactive power setting persistence	Switch for enabling/disabling the power-off function during reactive power.	Enable/Disable	
Reactive power regula- tion mode	_	Off/PF/Qt/Q(P)/Q(U)	
Reactive power regulation	Switch for enabling/disabling reactive response function.	Enable/Disable	
Reactive power regula- tion time	Ends time of reactive response.	0.1s~600.0s	
Q(P)Curve	Select corresponding curve according to local regulations	Curve A/Curve B/Curve C*	
QP_P1 Output power at P1 on the Q (P) mode curve (in percentage)		0.0%~100.0%	
QP_P2	Output power at P2 on the Q (P) mode curve (in percentage)	20.0%~100.0%	

Parameter	Definition/Setting Description	Range
QP_P3	Output power at P3 on the Q (P) mode curve (in percentage)	20.0%~100.0%
QP_K1	Power factor at P1 on the Q(P) mode curve	Curve A/Curve C:0.800~1.000 Curve B: [-0.600~0.600]*Ac- tive Overload Rate/1000
QP_K2	Power factor at P2 on the Q(P) mode curve	Curve A/Curve C: 0.800~1.000 Curve B: [-0.600~0.600]*Ac- tive Overload Rate/1000
QP_K3	Power factor at P3 on the Q(P) mode curve	Curve A/Curve C: 0.800~1.000 Curve B: [-0.600~0.600]*Ac- tive Overload Rate/1000
QP_EnterVoltage	Voltage percentage for Q(P) function activation	100.0%~110.0%
QP_ExitVoltage	Voltage percentage for Q(P) function deactivation	90.0%~100.0%
QP_EXitPower	Power percentage for Q(P) function deactivation	1.0%-20.0%
QP_EnableMode	Unconditional activation/deac- tivation of Q(P) function	Yes/No
Q(U)Curve	Select the corresponding curve according to local regulations	Curve A/Curve B/Curve C*
QU_V1	Pre-set grid voltage U1 that is reactive according to the grid voltage	80.0%~100.0%
QU_Q1	Pre-set proportion of reactive power according to the grid voltage U1	[-60.0%-0]* Overload Rate/ 1000

Parameter	Definition/Setting Description	Range
QU_V2	Pre-set grid voltage U2 that is reactive according to the grid voltage.	80.0%~100.0%
QU_Q2	Pre-set proportion of reactive power according to the grid voltage U2.	[-60.0%-60.0%]* Overload Rate/1000
QU_V3	Pre-set grid voltage U3 that is reactive according to the grid voltage.	100.0%~120.0%
QU_Q3	Pre-set proportion of reactive power according to the grid voltage U3.	[-60.0%-60.0%]* Overload Rate/1000
QU_V4	Pre-set grid voltage U4 that is reactive according to the grid voltage.	100.0%~120.0%
QU_Q4	Pre-set proportion of reactive power according to the grid voltage U4.	[0-60.0%]* Overload Rate/ 1000
QU_EnterPower	Active power for Q(U) function activation	20.0%~100.0%
QU_EXitPower	Active power for Q(U) function deactivation	1.0%~20.0%
QU_EnableMode	Unconditional activation/deac- tivation of Q(U) function	Yes/No/Yes,Limited by PF
QU_Limited PF Value	_	0-1

**Curve C is reserved and consistent with Curve A currently.

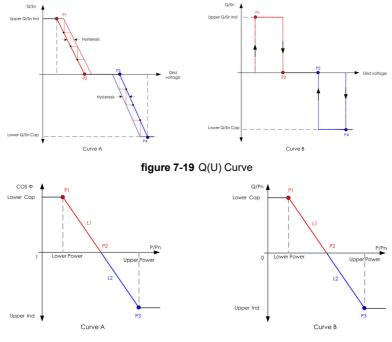


figure 7-20 Q(P) Curve

7.8.4 Communication Parameters

Tap "Settings \rightarrow Communication Parameters" to enter the corresponding screen, as shown in the following figure. The device address ranges from 1 to 246.

< BACK		< BACK
COMMUNICATION PARAMETERS		SERIAL PORT PARAMETERS
Serial Port Parameters		Device Address 1

figure 7-21 Communication Parameters

7.8.5 Firmware Update

To avoid download failure due to poor on-site network signal, it is recommended to download the firmware package to the mobile device in advance.

Perform firmware update only during high irradiance conditions in order to prevent equipment failure.

- Step 1 Enable the "Mobile data" of the mobile device.
- **Step 2** Open the App, enter the account and password on the login interface. Tap **Login** to enter the home interface.
- Step 3 Tap "More→Firmware Download" to enter corresponding interface on which you can view the device list.

Step 4 Select the device model before downloading the firmware. Tap the device name in the device

list to enter the firmware upgrade package detail interface, and tap $\stackrel{\checkmark}{\rightharpoonup}$ behind the firmware upgrade package to download it.

< BACK	$\underline{\downarrow}$
SG33CX	
Inverter	
Once the download is complete, selec upgrade package to upgrade through More/Firmware Update">>	

- **Step 5** Return to the **Firmware Download** interface, tap <u></u>in the upper right corner of the interface to view the downloaded firmware upgrade package.
- Step 6 Login the App via local access. Refer to "7.4 Login".
- Step 7 Tap More on the App home screen and then tap Firmware Update.
- **Step 8** Tap the upgrade package file, a prompt box will pop up asking whether to upgrade the firmware with the file, tap **CONFIRM** to perform the firmware upgrade.

SELECT FIRMWARE
Downloaded file
Sg33cx_20210519.zip
SG33CX

Step 9 Wait for the file to be uploaded. When the upgrade is finished, a message is displayed indicating that the upgrade is completed. Tap **Complete** to end the upgrade.

FIRM	IWARE UPDATE
	(t)
	(1)
	2%
	File is being uploaded. Please wait

- - End

7.8.6 Grounding Detection

Contact your distributor to obtain the advanced account and corresponding password before setting the earth detection parameters. If the distributor is unable to provide the required information, contact SUNGROW.

Unauthorized personnel are not allowed to log in with this account. Otherwise, SUNGROW shall not be held liable for any damages caused.

Tap "More \rightarrow Settings \rightarrow Operation Parameters \rightarrow Grounding Detection" to enter the corresponding screen.

SUNGROW

< BACK	
GROUNDING DETECTION	
Grounding Detection	
Grounding Detection Alarm Value 30.0 V	

figure 7-22 Grounding Detection

If the grounding detection is enabled, the DO relay will switch on automatically to signal the external alarm if the value exceeds the grounding detection alarm value.

The PV insulation resistance fault (fault sub-code 039) will trigger the DO relay to signal the external alarm.

7.8.7 Password Changing

Tap **Modify Password** to enter the modify password interface, as shown in the following figure.

MODIFY PASSWOR	D
Enter a new password. S will overwrite the previou	
The password shall consist letters and numbers.	of 8-20 digits, including
user	
	ىسىر 🔇
Confi	rm

figure 7-23 Modify Password

The password shall consisit of 8–20 digits, including letters and numbers.

8 System Decommissioning

8.1 Disconnecting Inverter

Danger of burns!

Even if the inverter is shut down, it may still be hot and cause burns. Wear protective gloves before operating the inverter after it cools down.

For maintenance or other service work, the inverter must be switched off. Proceed as follows to disconnect the inverter from the AC and DC power sources. Lethal voltages or damage to the inverter will follow if otherwise.

- Step 1 Disconnect the external AC circuit breaker and prevent it from inadvertent reconnection.
- Step 2 Rotate the DC switch (if there is) to the "OFF" position for disconnecting all of the PV string inputs.
- **Step 3** Wait about 5 minutes until the capacitors inside the inverter completely discharge.
- Step 4 Ensure that the DC cable is current-free with a current clamp.

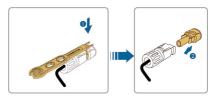
- - End

8.2 Dismantling the Inverter

Risk of burn injuries and electric shock!

After the inverter is powered off for 5 minutes, measure the voltage and current with professional instrument. Only when there is no voltage nor current can operators who wear protective equipment operate and maintain the inverter.

• Before dismantling the inverter, disconnect the inverter from both AC and DC power sources.



 If there are more than two layers of inverter DC terminals, dismantle the outer DC connectors before dismantling the inner ones.

 If the original packing materials are available, put the inverter inside them and then seal them using adhesive tape. If the original packing materials are not available, put the inverter inside a cardboard box suitable for the weight and size of this inverter and seal it properly.

SUNGROW

Step 1 Refer to "5 Electrical Connection", for the inverter disconnection of all cables in reverse steps. In particular, when removing the DC connector, use an MC4 wrench to loosen the locking parts and install waterproof plugs.

- Step 2 Refer to"4 Mechanical Mounting", to dismantle the inverter in reverse steps.
- Step 3 If necessary, remove the wall-mounting bracket from the wall.
- **Step 4** If the inverter will be used again in the future, please refer to "3.3 Inverter Storage" for a proper conservation.

- - End

8.3 Disposal of Inverter

Users take the responsibility for the disposal of the inverter.

WARNING

Please scrap the inverter in accordance with relevant local regulations and standards to avoid property losses or casualties.

NOTICE

Some parts of the inverter may cause environmental pollution. Please dispose of them in accordance with the disposal regulations for electronic waste applicable at the installation site.

9 Troubleshooting and Maintenance

9.1 Troubleshooting

Once the inverter fails, the fault information is displayed on the App interface. If the inverter is equipped with an LCD screen, the fault information can be viewed on it.

The fault codes and troubleshooting methods of all PV inverters are detailed in the table below, and only some of the faults may occur to the model you purchased. When a fault occurs, you can check the fault information according to the fault code on the mobile app.

Fault Code	Fault Name	Corrective Measures
	3, 14, 15 Grid Overvoltage	Generally, the inverter will be reconnected to the grid after the grid returns to normal. If the fault oc- curs repeatedly:
0 0 44 45		 Measure the actual grid voltage, and contact the local electric power company for solutions if the grid voltage is higher than the set value.
2, 3, 14, 15		 Check whether the protection parameters are appropriately set via the App or the LCD. Modify the overvoltage protection values with the con- sent of the local electric power operator. Contact Sungrow Customer Service if the pre- ceding causes are ruled out and the fault persists.
	Grid Undervoltage	Generally, the inverter will be reconnected to the grid after the grid returns to normal. If the fault oc- curs repeatedly:
4, 5		 Measure the actual grid voltage, and contact the local electric power company for solutions if the grid voltage is lower than the set value.
		2. Check whether the protection parameters are appropriately set via the App or the LCD.
		3. Check whether the AC cable is firmly in place.
		4. Contact Sungrow Customer Service if the pre- ceding causes are ruled out and the fault persists.

SUNGROW

Fault Code	Fault Name	Corrective Measures
0	Grid	Generally, the inverter will be reconnected to the
8	Overfrequency	grid after the grid returns to normal. If the fault oc-
		curs repeatedly:
		1. Measure the actual grid frequency, and contact
		the local electric power company for solutions if
9	Grid Underfrequency	the grid frequency is beyond the set range.
5		2. Check whether the protection parameters are
		appropriately set via the App or the LCD.
		3. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
		Generally, the inverter will be reconnected to the grid after the grid returns to normal. If the fault oc- curs repeatedly:
		1. Check whether the grid supplies power reliably.
		2. Check whether the AC cable is firmly in place.
	Grid Power	3. Check whether the AC cable is connected to
10	Outage	the correct terminal (whether the live wire and
		the N wire are correctly in place).
		4. Check whether the AC circuit breaker is connected.
		5. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
		1. The fault can be caused by poor sunlight or
	Excess Leakage	damp environment, and generally the inverter will
		be reconnected to the grid after the environment
12		is improved.
	Current	2. If the environment is normal, check whether
		the AC and DC cables are well insulated.
		3. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
	Grid Abnormal	Generally, the inverter will be reconnected to the
		grid after the grid returns to normal. If the fault oc- curs repeatedly:
		1. Measure the actual grid, and contact the local
13		electric power company for solutions if the grid
		parameter exceeds the set range.
		2. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
		3 bat and the later periodelet

Fault Code	Fault Name	Corrective Measures
17	Grid Voltage Imbalance	Generally, the inverter will be reconnected to the grid after the grid returns to normal. If the fault oc- curs repeatedly:
		 Measure the actual grid voltage. If grid phase voltages differ greatly, contact the electric power company for solutions.
		2. If the voltage difference between phases is within the permissible range of the local power company, modify the grid voltage imbalance pa- rameter through the App or the LCD.
		3. Contact Sungrow Customer Service if the pre- ceding causes are ruled out and the fault persists.
28, 29, 208, 212, 448-479	PV Reserve Con- nection Fault	1. Check whether the corresponding string is of reverse polarity. If so, disconnect the DC switch and adjust the polarity when the string current drops below 0.5 A.
		2. Contact Sungrow Customer Service if the pre- ceding causes are ruled out and the fault persists.
		*The code 28 to code 29 are corresponding to PV1 to PV2 respectively.
		*The code 448 to code 479 are corresponding to string 1 to string 32 respectively.
532-547, 564- 579	PV Reverse Con- nection Alarm	1. Check whether the corresponding string is of reverse polarity. If so, disconnect the DC switch and adjust the polarity when the string current drops below 0.5 A.
		 Contact Sungrow Customer Service if the pre- ceding causes are ruled out and the alarm persists.
		*The code 532 to code 547 are corresponding to
		string 1 to string 16 respectively.
		*The code 564 to code 579 are corresponding to string 17 to string 32 respectively.

Fault Code	Fault Name	Corrective Measures
	PV Abnormal Alarm	Check whether the voltage and current of the in-
		verter is abnormal to determine the cause of the
		alarm.
		1. Check whether the corresponding module is
		sheltered. If so, remove the shelter and ensure
		module cleanness.
		2. Check whether the battery board wiring is
548-563, 580-		loose, if so, make it reliably connected.
595		3. Check if the DC fuse is damaged. If so, replace
555		the fuse.
		4. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the alarm
		persists.
		*The code 548 to code 563 are corresponding to
		string 1 to string 16 respectively.
		*The code 580 to code 595 are corresponding to
		string 17 to string 32 respectively.
	Excessively High Ambient Temperature	Generally, the inverter will resume operation
		when the internal or module temperature returns
		to normal. If the fault persists:
		1. Check whether the ambient temperature of the
		inverter is too high;
		2. Check whether the inverter is in a well-venti-
37		lated place;
		3. Check whether the inverter is exposed to di-
		rect sunlight. Shield it if so;
43		4. Check whether the fan is running properly. Re-
		place the fan if not;
		5. Contact Sungrow Power Customer Service if
		the fault is due to other causes and the fault
		persists.
	Excessively Low Ambient	Stop and disconnect the inverter. Restart the in-
	,	verter when the ambient temperature rises within
	Temperature	the operation temperature range.

Fault Code	Fault Name	Corrective Measures
		Wait for the inverter to return to normal. If the
		fault occurs repeatedly:
39		1. Check whether the ISO resistance protection
		value is excessively high via the app or the LCD,
	Low System Insu- lation Resistance	and ensure that it complies with the local regulations.
		2. Check the resistance to ground of the string
		and DC cable. Take corrective measures in case
		of short circuit or damaged insulation layer.
		3. If the cable is normal and the fault occurs on
		rainy days, check it again when the weather turns
		fine.
		4. If there are batteries, check whether battery
		cables are damaged and whether terminals are
		loose or in poor contact. If so, replace the dam-
		aged cable and secure terminals to ensure a reli-
		able connection.
		5. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists
	Grounding Cable Fault	1. Check whether the AC cable is correctly
		connected.
106		2. Check whether the insulation between the
100		ground cable and the live wire is normal.
		3. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists
	Electric Arc Fault	1. Disconnect the DC power supply, and check
		whether any DC cable is damaged, the connec-
		tion terminal or fuse is loose or there is a weak
		contact. If so, replace the damaged cable, faster
		the terminal or fuse, and replace the burnt
88		component.
		2. After performing step 1, reconnect the DC
		power supply, and clear the electric arc fault via
		the App or the LCD, after that the inverter will re- turn to normal.
		3. Contact Sungrow Customer Service if the fault
		-

Fault Code	Fault Name	Corrective Measures
	Reverse Connec- tion Alarm of the Meter/CT	1. Check if the meter is wrongly connected.
84		2. Check if the input and output wiring of the me-
		ter is reversed.
		3. If the existing system is enabled, please check
		if the rated power setting of the existing inverter
		is correct.
		1. Check whether the communication cable and
		the terminals are abnormal. If so, correct them to
	Meter Communi-	ensure reliable connection.
514	cation Abnormal Alarm	2. Reconnect the communication cable of the
014		meter.
		3. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the alarm
		persists.
	Grid Confrontation	1. Check whether the output port is connected to
323		actual grid. Disconnect it from the grid if so.
525		2. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
	Inverter Parallel Communication Alarm	1. Check whether the communication cable and
		the terminals are abnormal. If so, correct them to
75		ensure reliable connection.
		2. Reconnect the communication cable of the
		meter.
		3. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the alarm
		persists.

Fault Code	Fault Name	Corrective Measures
7, 11, 16, 19–		
25, 30–34, 36,		
38, 40–42, 44–		
50, 52–58, 60–		
69, 85, 87, 92,		1. Wait for the inverter to return to normal.
93, 100–105,		2. Disconnect the AC and DC switches, and dis-
107–114, 116–		connect the battery side switches if there are bat-
124, 200–211,	System Fault	teries. Close the AC and DC switches in turn 15
248–255, 300–	oystern r duit	minutes later and restart the system.
322, 324–328,		3. Contact Sungrow Customer Service if the pre-
401–412, 600–		ceding causes are ruled out and the fault persists.
603, 605, 608,		ceung causes are ruled out and the fault persists.
612, 616, 620,		
622–624, 800,		
802, 804, 807,		
1096–1122		
59, 70–74, 76–		1. The inverter can continue running.
83, 89, 216–		2. Check whether the related wiring and terminal
218, 220–233,		are abnormal, check whether there are any for-
432–434, 500–	System Alarm	eign materials or other environmental abnormal-
513, 515–518,	5	ities, and take corresponding corrective
635–638, 900,		measures when necessary.
901, 910, 911,		3. If the fault persists, please contact Sungrow
996		Power Customer Service.
		1. Check whether the corresponding string is of
		reverse polarity. If so, disconnect the DC switch
		and adjust the polarity when the string current
264 282	MPPT Reverse	drops below 0.5 A.
264-283	Connection	2. Contact Sungrow Customer Service if the pre-
		ceding causes are ruled out and the fault persists.
		*The code 264 to code 279 are corresponding to
		string 1 to string 20 respectively.

SUNGROW

Fault Code	Fault Name	Corrective Measures	
		1. The inverter can continue running.	
		2. Check whether the related wiring and termi-	
		nals are abnormal, check whether there are any	
332-363	Boost Capacitor	foreign materials or other environmental abnor-	
552-505	Overvoltage Alarm	malities, and take corresponding corrective	
		measures when necessary.	
		If the fault persists, please contact Sungrow	
		Power Customer Service.	
		1. Disconnect the AC and DC switches, and dis-	
		connect the battery side switches if there are bat-	
364-395	Boost Capacitor	teries. Close the AC and DC switches in turn 15	
504-595	Overvoltage Fault	minutes later and restart the system.	
		2. If the fault persists, please contact Sungrow	
		Power Customer Service.	
		1. Check whether the number of PV modules of	
		the corresponding string is less than other strings.	
		If so, disconnect the DC switch and adjust the PV	
		module configuration when the string current	
		drops below 0.5 A.	
1548-1579	String Current	2. Check whether the PV module is shaded;	
1546-1579	Reflux	3. Disconnect the DC switch to check whether	
		the open circuit voltage is normal when the string	
		current drops below 0.5 A. If so, check the wiring	
		and configuration of the PV module,	
		4. Check whether the orientation of the PV mod-	
		ule is abnormal.	

Fault Code	Fault Name	Corrective Measures
1600 - 1615, 1632 - 1655	PV Grounding Fault	 When the fault occurs, it is forbidden to directly disconnect the DC switch and unplug PV terminals when the direct current is greater than 0.5 A; Wait until the direct current of the inverter falls below 0.5 A, then disconnect the DC switch and unplug the faulty strings; Do not reinsert the faulty strings before the grounding fault is cleared; If the fault is not caused by the foregoing reasons and still exists, contact Sungrow Customer Service.
1616	System Hardware Fault	 It is prohibited to disconnect the DC switch when the DC current is greater than 0.5 A when the fault occurs. Disconnect the DC switch only when the inver- ter DC side current drops below 0.5 A. It is prohibited to power up the inverter again. Please contact Sungrow Customer Service.

Once a fault occurs to the optimizer, the fault information is displayed on the App.

Fault	Fault	Possible	Corrective Method
Code	Name	Cause	
4	Input overvolt- age	The PV voltage is higher than the set pro- tection value	Check whether the open-circuit voltage of the PV module connected to the optimizer exceeds the maximum input voltage allowed by the optimizer.
8	Output overvolt- age	The output voltage ex- ceeds the set limit value	 Check whether the alarm still exists after this alarm is cleared. If the alarm persists, please contact Sungrow Customer Service.
16	Overcur- rent	The input current ex- ceeds the set limit value	 Check whether the alarm still exists after this alarm is cleared. If the alarm persists, please contact Sungrow Customer Service.

SUNGROW

Fault Code	Fault Name	Possible Cause	Corrective Method
32	Overtem- perature	The oper- ating tem- perature is too high	 Take measures to reduce the temperature, such as improving heat dissipation conditions. Check whether the alarm still exists in the early morning or evening. If the alarm still exists with correct settings, please contact Sungrow Customer Service.
128	Output current backfeed	The output current of the opti- mizer backfeeds	 If strings are connected in parallel, check whether the number of modules varies consider- ably between the two strings, or the module is se- verely shaded. If the alarm persists, please contact Sungrow Customer Service.
512	Hardware fault	A hardware fault occurs to the optimizer	Please contact Sungrow Customer Service.
1024	Update failed	The opti- mizer soft- ware fails to upgrade	 Check the light condition, and update the opti- mizer again if the light is normal. If the fault persists, please contact Sungrow Customer Service.

• If there is a string current backfeed fault, first check whether the optimizer is offline.

• Contact the dealer if the measures listed in the "Troubleshooting Method" column have been taken but the problem persists. Contact SUNGROW if the dealer fails to solve the problem.

A

9.2 Maintenance

9.2.1 Maintenance Notices

A DANGER

Risk of inverter damage or personal injury due to incorrect service!

- Be sure to use special insulation tools when perform high-voltage operations.
- Before any service work, first disconnect the grid-side AC circuit breaker and check the inverter status. If the inverter indicator is off, please wait until night to disconnect the DC switch. If the inverter indicator is on, directly disconnect the DC switch.
- Turn the DC switch from ON to OFF, the DC switch can be locked here. (For countries "AU" and "NZ")
- After the inverter is powered off for 5 minutes, measure the voltage and current with professional instrument. Only when there is no voltage nor current can operators who wear protective equipment operate and maintain the inverter
- Even if the inverter is shut down, it may still be hot and cause burns. Wear protective gloves before operating the inverter after it cools down.

DANGER

When maintaining the product, it is strictly prohibited to open the product if there is an odor or smoke or if the product appearance is abnormal. If there is no odor, smoke, or obvious abnormal appearance, repair or restart the inverter according to the alarm corrective measures. Avoid standing directly in front of the inverter during maintenance.

CAUTION

To prevent misuse or accidents caused by unrelated personnel: Post prominent warning signs or demarcate safety warning areas around the inverter to prevent accidents caused by misuse.

NOTICE

Restart the inverter only after removing the fault that impairs safety performance. As the inverter contains no component parts that can be maintained, never open the enclosure, or replace any internal components.

To avoid the risk of electric shock, do not perform any other maintenance operations beyond this manual. If necessary, contact your distributor first. If the problem persists, contact SUNGROW. Otherwise, the losses caused is not covered by the warranty.

NOTICE

Touching the PCB or other static sensitive components may cause damage to the device.

- Do not touch the circuit board unnecessarily.
- Observe the regulations to protect against electrostatic and wear an anti-static wrist strap.

NOTICE

If the earth fault occurs, the DO dry-contact will switch on automatically to signal the external alarm. The LED will turn red and a beeping sound will alarm until the fault is rectified, for internet connected products the error will also be sent to the portal.

9.2.2 Routine Maintenance

Item	Method	Period
Device clean	Check whether the air outlet and heat sink are blocked by dust and other objects. Check if the air inlet and outlet are normal. Clean the air inlet and outlet, if necessary.	Six months to a year (depend on the dust con- tents in air)
Fans	Check whether there is a fan alarm on the App.Check whether there is any abnormal noise when the fan is rotating.Clean or replace the fans if necessary (see the following section).	Once a year
Cable entry	Check whether the cable entry is in- sufficiently sealed or the gap is exces- sively large, and reseal the entry when necessary.	Once a year
Electrical connection	Check whether cables are loose or fall off. Check whether the cable is damaged, especially the part in contact with the metal enclosure.	Six months to a year

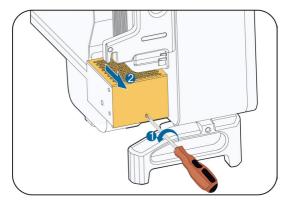
9.2.3 Cleaning Air Inlet and Outlet

A significant amount of heat is generated when the inverter is working.

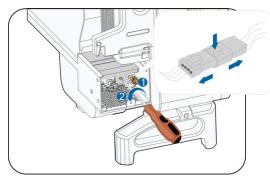
In order to maintain good ventilation, please check to make sure the air inlet and outlet are not blocked.

Clean the air inlet and outlet with soft brush or vacuum cleaner if necessary.

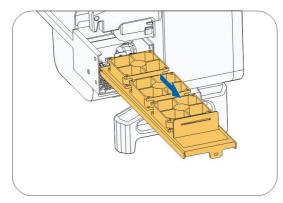
9.2.4 Fan Maintenance


A DANGER

- Power off the inverter and disconnect it from all power supplies before maintaining fans.
- After the inverter is powered off for 5 minutes, measure the voltage and current with professional instrument. Only when there is no voltage nor current can operators who wear protective equipment operate and maintain the inverter.
- Fan maintenance must be performed by professionals.


Fans inside the inverter are used to cool the inverter during operation. If the fans do not operate normally, the inverter may not be cooled down and inverter efficiency may decrease. Therefore, it is necessary to clean dirty fans and replace the broken fans in a timely manner. The operation procedure is as follows:

Step 1 Stop the inverter (see 8.1 Disconnecting the Inverter).


Step 2 Loosen the screw on the sealing plate of the fan module.

Step 3 Press the tab of the latch hook, unplug the cable connection joint outwards, and loosen the screw on the fan holder.

Step 4 Pull out the fan module, clean the fans with soft brush or vacuum cleaner, and replace them when necessary.

Step 5 Reinstall the fan back to the inverter in reverse order and restart the inverter.

- - End

10 Appendix

10.1 Technical Data

Parameters	SG30CX	SG33CX	
Input (DC)			
Max. PV input voltage		1100 V ⁽¹⁾	
Min. PV input voltage /		200.14/250.14	
Start-up input voltage	2	200 V / 250 V	
Nominal PV input voltage		585 V	
MPP voltage range	20	00 V ~ 1000 V	
MPP voltage range for	55	50 V ~ 850 V ⁽²⁾	
rated power			
No. of independent MPP		3	
inputs			
No. of PV strings per		2	
MPPT		-	
Max. PV input current	3 X 26 A	3 X 26 A	
Max. DC short-circuit	3 X 40A	3 X 40A	
current			
Output (AC)			
		33 kVA @45 °C, 400 Vac /	
AC output power	29.9 kVA	36.3 kVA @ 40 °C, 400 Vac	
		33 KVA@50°C, 415 Vac /	
	42.40.4	36.3 KVA@45°C, 415 Vac	
Max. AC output current	43.16 A	55.2 A	
Nominal AC voltage		PE , 230 / 400 V	
AC voltage range	3	12 V ~ 528 V	
Nominal grid frequency /	50 Hz / 45 ~ 5	55 Hz, 60 Hz / 55 ~ 65 Hz	
Grid frequency range			
Harmonic (THD)	< 3 % ((at nominal power)	
DC current injection	_	< 0.5 % In	
Power factor at nominal			
power / Adjustable power	> 0.99 / 0.8 leading ~ 0.8 lagging		
factor			
Feed-in phases / AC	3/3		
connection			

SUNGROW

Parameters	SG30CX	SG33CX
Efficiency		
Max. efficiency / Euro-	98.6% / 98.3%	
pean efficiency		
Protection		
DC	Ň	⁄es
reverse polarity protection		63
AC short circuit	Ň	⁄es
protection		63
Leakage current	Ň	⁄es
protection		63
Grid monitoring	Ŋ	/es
Ground fault monitoring	Ŋ	⁄es
DC switch	Ŋ	⁄es
AC switch		No
PV string monitoring	Ŋ	/es
Q at night function	Ŋ	⁄es
PID recovery function	Ŋ	⁄es
Arc fault circuit interrupt-		Ontional
er (AFCI)	—	Optional
Overvoltage protection	DC Type II / AC Type II	DC Type II (Optional:Type I +
		II) / AC Type II
General Data		
Dimensions (W×H×D)	702×59	5×310mm
Weight	50) kg
Topology	Transfo	ormerless
Degree of protection	IF	266
Night power	~	2 W
consumption	2.	2 VV
Operating ambient tem-	-30 ~ 60 °C (>	45 °C derating)
perature range	-30 00 0 (2	40 C derading)
Allowable relative humid-	0 400%	
ity range	0 ~ 100%	
	Smart forced air cooling	
Cooling method	Smart force	ed air cooling
Cooling method Max. operating altitude		ed air cooling 000 m derating)
	4000 m (> 30	
Max. operating altitude Display	4000 m (> 30	000 m derating)
Max. operating altitude	4000 m (> 30 LED, Blue RS485 / Optional: WLAN , Ethernet	00 m derating) tooth + App

Parameters	SG30CX	SG33CX
AC connection type	OT or DT terminal (Max.70 mm ²)	
Orid Current	Q at night fur	nction, LVRT, HVRT, active & reactive power con-
Grid Support	trol and power ramp rate control	

Note(1): The inverter enters the standby state when the input voltage ranges between 1,000 V and 1,100 V. If the maximum DC voltage in the system can exceed 1000 V, the MC4 connectors included in the scope of delivery must not be used. In this case MC4 Evo2 connectors must be used.

Note(2):

- The voltage difference between MPPTs should be less than 80 V.
- The voltage of the configured string should be higher than the lower limit of the rated MPPT voltage.

Input (DC) Max. PV input voltage 1100 V(3) Min. PV input voltage / 200 V / 250 V Start-up input voltage 585 V Nominal PV input voltage 585 V MPP voltage range 200 V ~ 1000 V MPP voltage range for rated power 550 V ~ 850 V(4) No. of independent MPP finputs 4 No. of PV strings per MPPT 2 MAx. PV input current 4 X 26 A 5 X 26 A Max. DC short-circuit 4 X 40 A 5 X 40A current 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 45°C, 415 Vac / 55 45°C, 415 Vac AC output power 66.9 A 83.6 A Nominal AC voltage 3/1 N / PE , 230 / 400 V AC voltage range AC voltage range 312 ~ 528 V Nominal grid frequency / Grid frequency / Grid frequency range	Parameters	SG40CX	SG50CX
Min. PV input voltage / Start-up input voltage $200 \ V / 250 \ V$ Nominal PV input voltage $585 \ V$ MPP voltage range $200 \ V - 1000 \ V$ MPP voltage range for rated power $550 \ V \sim 850 \ V^{(4)}$ No. of independent MPP inputs4 5 No. of PV strings per MPT2MPT2Max. PV input current $4 \ X 26 \ A$ $5 \ X 26 \ A$ Max. DC short-circuit current $4 \ X 40 \ A$ $5 \ X 40 \ A$ Output (AC)40 kVA @ 45°C, 400 Vac / 44 $50 \ kVA @ 45°C, 400 Vac / 55 \ kVA @ 40°C, 400 Vac 55 \ 45°C, 415 Vac$ AC output power $66.9 \ A$ $83.6 \ A$ Nominal AC voltage $3/N / PE$, $230 / 400 \ V$ AC voltage range $312 \sim 528 \ V$	Input (DC)		
200 V / 250 VStart-up input voltage585 VMPP voltage range200 V ~ 1000 VMPP voltage range for rated power550 V ~ 850 V(4)No. of independent MPP inputs45No. of PV strings per MPPT2MAX. PV input current4 X 26 A5 X 26 AMax. DC short-circuit current4 X 40 A5 X 40AOutput (AC)AC output power40 kVA @ 45°C, 400 Vac / 4450 kVA @ 45°C, 400 Vac / 55AC output power66.9 A83.6 ANominal AC voltage3 / N / PE , 230 / 400 VXA @ 412 S5 ~ 65 HzNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Max. PV input voltage	1100) \/(3)
Start-up input voltageNominal PV input voltage585 VMPP voltage range200 V ~ 1000 VMPP voltage range for rated power550 V ~ 850 V(4)No. of independent MPP inputs4No. of PV strings per MPPT2MPPT2Max. PV input current4 X 26 A5 X 26 AMax. DC short-circuit current4 X 40 A5 X 40ACurrentOutput (AC)40 kVA @ 45°C, 400 Vac / 4450 kVA @ 45°C, 400 Vac / 55AC output power40 kVA @ 45°C, 400 Vac / 4460.9 A83.6 ANominal AC voltage3 / N / PE , 230 / 400 VAC voltage range312 ~ 528 VNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Min. PV input voltage /	200.1/	1250.)/
$\begin{array}{c c c c c c c c } MPP \ voltage range & 200 \ V \sim 1000 \ V \\ MPP \ voltage range for rated power & 550 \ V \sim 850 \ V^{(4)} \\ \hline rated power & 550 \ V \sim 850 \ V^{(4)} \\ \hline rated power & 5 \\ \hline No. of independent \ MPP & 4 & 5 \\ \hline inputs & 2 \\ \hline No. of \ PV \ strings per & 2 \\ \hline MPPT & & 2 \\ \hline Max. \ PV \ input \ current & 4 \ X \ 26 \ A & 5 \ X \ 26 \ A \\ \hline Max. \ DC \ short-circuit & 4 \ X \ 40 \ A & 5 \ X \ 40 \ A \\ \hline current & & & & & & & & & & & & & & & & & & &$	Start-up input voltage	200 V /	7 250 V
MPP voltage range for rated power $550 \vee ~ 850 \vee (4)$ No. of independent MPP inputs45No. of PV strings per MPPT2MAX. PV input current4 X 26 A5 X 26 AMax. DC short-circuit current4 X 40 A5 X 40ACurrent40 kVA @ 45°C, 400 Vac / 4450 kVA @ 45°C, 400 Vac / 55AC output (AC)40 kVA @ 45°C, 400 Vac / 4450 kVA @ 45°C, 400 Vac / 55AC output power40 kVA @ 40°C, 400 Vac 40 kVAkVA @ 40°C, 400 Vac 50Max. AC output current66.9 A83.6 ANominal AC voltage3 / N / PE , 230 / 400 VAC voltage range312 ~ 528 VNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Nominal PV input voltage	58	5 V
rated power 550 V ~ 850 V(4) No. of independent MPP 4 inputs 5 No. of PV strings per 2 MPPT 2 Max. PV input current 4 X 26 A 5 X 26 A Max. DC short-circuit 4 X 40 A 5 X 40A current 0utput (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 45°C, 400 Vac 44 kVA @ kVA @ 40°C, 400 Vac 50 60 % A @ 40°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 AC output power 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	MPP voltage range	200 V ~	[,] 1000 V
rated powerNo. of independent MPP4inputs4Sinputs5No. of PV strings per MPPT2MPPT2Max. PV input current4 X 26 AMax. DC short-circuit current4 X 40 ASourcent5 X 40AOutput (AC)40 kVA @ 45°C, 400 Vac / 44AC output power40 kVA @ 45°C, 400 Vac 4440 kVA @ 40°C, 400 Vac 40 kVAkVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @Max. AC output current66.9 AMax. AC output current66.9 A50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	MPP voltage range for	550 \/~	850 V(4)
inputs 4 5 No. of PV strings per 2 MPPT 2 Max. PV input current 4 X 26 A 5 X 26 A Max. DC short-circuit 4 X 40 A 5 X 40A current 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 Output (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 45°C, 415 Vac / 55 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range Mominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	rated power	550 V 4	000 V()
inputs2No. of PV strings per MPPT2MPPT2Max. PV input current4 X 26 AMax. DC short-circuit current4 X 40 A5 X 40Acurrent40 kVA @ 45°C, 400 Vac / 44Output (AC)AC output power40 kVA @ 45°C, 400 Vac / 4440 kVA @ 40°C, 400 Vac 40 kVAAC output power40 kVA @ 40°C, 400 Vac / 44 kVA @40 kVA @ 40°C, 400 Vac 50% VA @ 40°C, 415 Vac / 44 kVA @% VA @ 45°C, 415 VacMax. AC output current66.9 A83.6 ANominal AC voltage3 / N / PE , 230 / 400 VAC voltage range312 ~ 528 VNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	No. of independent MPP	Λ	5
MPPT 2 Max. PV input current 4 X 26 A 5 X 26 A Max. DC short-circuit 4 X 40 A 5 X 40A current 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output (AC) 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 40°C, 400 Vac 50 83.6 A Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	inputs	4	5
MPPT Max. PV input current 4 X 26 A 5 X 26 A Max. DC short-circuit 4 X 40 A 5 X 40A current 4 X 40 A 5 X 40A Output (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	No. of PV strings per		
Max. DC short-circuit 4 X 40 A 5 X 40A Output (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 40°C, 400 Vac / 55 Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	MPPT		-
4 X 40 A 5 X 40A current 4 X 40 A 5 X 40A Output (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 40°C, 400 Vac / 55 45°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Max. PV input current	4 X 26 A	5 X 26 A
Output (AC) 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 AC output power 40 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac / 55 Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Max. DC short-circuit	4 X 40 A	5 X 40A
AC output power 40 kVA @ 45°C, 400 Vac / 44 50 kVA @ 45°C, 400 Vac / 55 kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac / 55 Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	current		
AC output power kVA @ 40°C, 400 Vac 40 kVA kVA @ 40°C, 400 Vac 50 @ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Output (AC)		
AC output power @ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz			C
@ 50°C, 415 Vac / 44 kVA @ kVA @ 50°C, 415 Vac / 55 45°C, 415 Vac kVA @ 45°C, 415 Vac Max. AC output current 66.9 A 83.6 A Nominal AC voltage 3 / N / PE , 230 / 400 V AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	AC output power	kVA @ 40°C, 400 Vac 40 kVA	U
Max. AC output current66.9 A83.6 ANominal AC voltage3 / N / PE , 230 / 400 VAC voltage range312 ~ 528 VNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz		@ 50°C, 415 Vac / 44 kVA @	kVA @ 50°C, 415 Vac / 55
Nominal AC voltage3 / N / PE , 230 / 400 VAC voltage range312 ~ 528 VNominal grid frequency /50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz		45°C, 415 Vac	kVA @ 45°C,415 Vac
AC voltage range 312 ~ 528 V Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Max. AC output current	66.9 A	83.6 A
Nominal grid frequency / 50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	Nominal AC voltage	3 / N / PE , 230 / 400 V	
50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	AC voltage range	312 ~ 528 V	
	Nominal grid frequency /	50 Hz / 45 ~ 55 Hz, 60 Hz / 55 ~ 65 Hz	
	Grid frequency range		

Parameters	SG40CX	SG50CX	
Harmonic (THD)	< 3 % (at nominal power)		
DC current injection	< 0.5	% In	
Power factor at nominal power / Adjustable power factor	> 0.99 / 0.8 leading ~ 0.8 lagging		
Feed-in phases / AC connection	3/3		
Efficiency			
Max. efficiency / Euro- pean efficiency	98.6% / 98.3%	98.7% / 98.4%	
Protection			
DC reverse polarity pro- tection	Ye	es	
AC short circuit protection	Yes		
Leakage current protection	Yes		
Grid monitoring	Ye	es	
Ground fault monitoring	Yes		
DC switch	Ye	es	
AC switch	No		
PV string monitoring	Ye	es	
Q at night function	Ye	es	
PID recovery function	Ye	es	
Arc fault circuit interrupt- er (AFCI)	Optional	Optional	
Overvoltage protection	DC Type II (Optional:Type I + II) / AC Type II	DC Type II (Optional:Type I + II) / AC Type II	
General Data			
Dimensions (W*H*D)	782×645×310mm		
Weight	58 kg	62 kg	
Тороlоду	Transformerless		
Degree of protection	IP66		
Night power consumption	≤2 W		
Operating ambient tem- perature range	-30 ~ 60 °C (> /	45 °C derating)	

Parameters	SG40CX	SG50CX	
Allowable relative humid-	0 4000/		
ity range	0 ~ 100%		
Cooling method	Smart forced air cooling		
Max. operating altitude	4000 m (> 3000 m derating)		
Display	LED, Bluetooth + App		
Communication	RS485 / Optional: WLAN,	RS485 / Optional: WLAN,	
Communication	Ethernet	Ethernet	
DC connection type	MC4 (Max. 6 mm ²)		
AC connection type	OT or DT terminal (Max.70 mm ²)		
Orid Original and	Q at night function, LVRT, HVRT, active & reactive power con-		
Grid Support	trol and power ramp rate control		

Note(3): The inverter enters the standby state when the input voltage ranges between 1,000 V and 1,100 V. If the maximum DC voltage in the system can exceed 1000 V, the MC4 connectors included in the scope of delivery must not be used. In this case MC4 Evo2 connectors must be used.

Note(4):

- The voltage difference between MPPTs should be less than 80 V.
- The voltage of the configured string should be higher than the lower limit of the rated MPPT voltage.

Parameters	SG30CX ⁽⁵⁾	SG50CX ⁽⁵⁾
Input (DC)		
Recommended max. PV	45 kW 76 kW	
input power	43 KW	70 KVV
Max. PV input voltage	1100 V ⁽⁶⁾	
Min. PV input voltage /	200 V / 250 V	
Start-up input voltage		
Nominal PV input	585 V	
voltage		
MPP voltage range	200 V ~ 1000 V	
MPP voltage range for	550 V ~ 850 V ⁽⁷⁾	
rated power		
No. of independent MPP	3	F
inputs	3 5	5
No. of PV strings per	2	
MPPT	۷۲	
Max. PV input current	78 A (26 A / 26 A / 26 A)	130 A (26 A / 26 A / 26 A /
		26 A / 26 A)

Parameters	SG30CX ⁽⁵⁾	SG50CX ⁽⁵⁾	
Max. DC short-circuit	120 A (40 A / 40 A / 40 A)	200 A (40 A / 40 A / 40 A /	
current		40 A / 40 A)	
Output (AC)			
AC output power	29.9 kVA	50 kVA	
Rated AC output appa-	29.9 kVA	50 kVA	
rent power	29.9 KVA	JUKVA	
Max. AC output current	48.15 A	80.5 A	
Nominal AC voltage	3 / N / PE , 230 / 400 V		
AC voltage range	312 V ~ 528 V		
Nominal grid frequency /			
Grid frequency range	50 Hz / 45 ~ 55 Hz,	00 HZ / 55 ~ 65 HZ	
Harmonic (THD)	< 3 % (at ra	ted power)	
Power factor at nominal			
power / Adjustable	> 0.99 / 0.8 leadi	ng ~ 0.8 lagging	
power factor			
Feed-in phases / con-	3/3–PE		
nection phases			
Efficiency			
Max. efficiency / Euro-	98.6 % / 98.3 %	98.7 % / 98.4 %	
pean efficiency	90.0 /07 90.3 /0	90.7 /0/ 90.4 /0	
Protection			
DC reverse polarity pro-	Ye	es	
tection			
AC short circuit	Ye	es	
protection			
Leakage current	Ye	es	
protection		165	
Grid monitoring	Yes		
Ground fault monitoring	Yes		
DC switch	Yes		
AC switch	No		
PV string monitoring	Yes		
Q at night function	Yes		
PID recovery function	Yes		
DC Terminal Protective	Ye	S	
Cover	103		
Communication dongle	Ye	es	
(EyeM4)			

Parameters	SG30CX ⁽⁵⁾	SG50CX ⁽⁵⁾	
Surge Protection	DC Type II / AC Type II		
Protective Class			
Overvoltage Category	DC II / AC III		
Active Anti-Islanding	Frequency Shift		
Method			
General Data			
Dimensions (W×H×D)	702×595×310mm	782×645×310 mm	
Weight	50 kg	62 kg	
Topology	Transformerless		
Degree of protection	IP66		
Night power	≤2 W		
consumption			
Operating ambient tem-	-30 ~ 60 °C (> 45 °C derating)		
perature range			
Allowable relative humid-	0 ~ 100%		
ity range			
Cooling method	Smart forced air cooling		
Max. operating altitude	4000 m (> 3000 m derating)		
Display	LED, Bluetooth + App		
Communication	RS485 / WLAN / Optional: Ethernet		
DC connection type	MC4 (Max. 6 mm ²)		
AC connection type	OT or DT terminal (Max.70 mm²)		
Grid Support	Q at night function, LVRT, HVRT, active & reactive power con-		
	trol and power ramp rate control		
Country of manufacture	China		

Note(5): For Australia.

Note(6): The inverter enters the standby state when the input voltage ranges between 1,000 V and 1,100 V. If the maximum DC voltage in the system can exceed 1000 V, the MC4 connectors included in the scope of delivery must not be used. In this case MC4 Evo2 connectors must be used.

Note(7):

- The voltage difference between MPPTs should be less than 80 V.
- The voltage of the configured string should be higher than the lower limit of the rated MPPT voltage.

Parameters	SG30CX-NI	SG50CX-NI
Input (DC)		
Recommended max. PV	45kW	76kW
input power	45677	70800
Max. PV input voltage	1100) V(8)
Min. PV input voltage /	200 V / 250 V	
Start-up input voltage		
Nominal PV input voltage	585 V	
MPP voltage range	200 ~1000 V	
MPP voltage range for	EEO M	8E0) /(9)
rated power	550 V ~	850 V ⁽⁹⁾
No. of independent MPP	0	
inputs	3	5
No. of PV strings per	2	
MPPT	2	
Max. PV input current	78 A (26 A / 26 A / 26 A)	130 A(26 A / 26 A / 26 A / 26
		A / 26 A)
Max. DC short-circuit	120 A (40 A / 40 A / 40 A)	200 A(40 A / 40 A / 40 A / 40
current		A / 40 A)
Output (AC)		
AC output power	29.9 kVA	50 kVA
Rated AC output appa-	29.9 kVA	50 kVA
rent power		
Max. AC output current	48.15 A	80.5 A
Nominal AC voltage	3 / N / PE , 230 / 400 V	
AC voltage range	312 ~	528 V
Nominal grid frequency /	50 Hz / 45 ~ 55 Hz.	, 60 Hz / 55 ~ 65 Hz
Grid frequency range		
Harmonic (THD)	< 3 % (at nominal power)	
Power factor at nominal	> 0.99 / 0.8 leading ~ 0.8 lagging	
power / Adjustable power		
factor		
Feed-in phases / AC	3 / 3-PE	
Efficiency		
Max. efficiency / Euro-	98.6% / 98.3%	98.7% / 98.4%
pean efficiency		
Protection		

Parameters	SG30CX-NI	SG50CX-NI
DC reverse polarity pro-	Ye	20
tection	Te	
AC short circuit	Yes	
protection		
Leakage current	Yes	
protection		
Grid monitoring	Ye	es
Ground fault monitoring	Ye	es
DC switch	No	(10)
AC switch	Ye	es .
PV string monitoring	Ye	es
Q at night function	Yes	
PID recovery function	Yes	
DC Terminal Protective	Var	
Cover	Yes	
Surge protection	DC Type II / AC Type II	
General Data		
Dimensions (W×H×D)	702×595×310mm	782×645×310mm
Weight	50 kg	62 kg
Тороlоду	Transformerless	
Degree of protection	IP66	
Night power		
consumption	≤2 W	
Operating ambient tem-	-30 ~ 60 °C (> 45 °C derating)	
perature range		
Allowable relative humid-		
ity range	0~100%	
Cooling method	Smart forced air cooling	
Max. operating altitude	4000 m (> 3000 m derating)	
Display	LED, Bluetooth + App	
Communication	RS485 / WLAN / Optional: Ethernet	
DC connection type	MC4 (Max. 6 mm ²)	
AC connection type	OT or DT terminal (Max.70 mm ²)	
	Q at night function, LVRT, HVRT, active & reactive power con-	
Grid Support	trol and power ra	amp rate control
Country of manufacture	China	

Note(8):The inverter enters the standby state when the input voltage ranges between 1,000 V and 1,100 V. If the maximum DC voltage in the system can exceed 1000 V, the MC4

connectors included in the scope of delivery must not be used. In this case MC4 Evo2 connectors must be used.

Note(9):

- The voltage difference between MPPTs should be less than 80 V.
- The voltage of the configured string should be higher than the lower limit of the rated MPPT voltage.

Note(10):For inverters without a DC switch, it is necessary to prepare an external DC switch according to AS 60947.3.

10.2 Wring Distance of DI Dry Contact

The wiring distance between DI dry contact terminals must meet the requirements in the table below. The wiring distance L is the total length of all DI signal cables.

$$L = 2\sum_{k=1}^{n} L_k$$

 L_K refers to the cable length in one direction between the DI dry contact terminal of the kth inverter and the corresponding terminal of the (k-1)th inverter.

Number of	Maximum	Wiring Distance(unit:m)
Inverter	16AWG / 1.31mm ²	17AWG / 1.026mm ²
1	13030	10552
2	6515	5276
3	4343	3517
4	3258	2638
5	2606	2110
6	2172	1759
7	1861	1507
8	1629	1319
9	1448	1172
10	1303	1055
11	1185	959
12	1086	879
13	1002	812
14	931	754

table 10-1 Correspondence Between Inverter Quantity and Maximum Wiring Distance

Number of	Maximum Wiring	Distance(unit:m)
Inverter	16AWG / 1.31mm ²	17AWG / 1.026mm ²
15	869	703
16	814	660
17	766	621
18	724	586
19	686	555
20	652	528
21	620	502
22	592	480
23	567	459
24	543	440
25	521	422

NOTICE

In case the specification of the cable used is not included in the table above, when there is only one inverter, ensure that the line impedance of the input node is less than 300Ω ; and when there are multiple inverters connected in the daisy chain, ensure that the impedance is less than 300Ω /number of inverter.

10.3 Quality Assurance

When product faults occur during the warranty period, SUNGROW will provide free service or replace the product with a new one.

Evidence

During the warranty period, the customer shall provide the product purchase invoice and date. In addition, the trademark on the product shall be undamaged and legible. Otherwise, SUNGROW has the right to refuse to honor the quality guarantee.

Conditions

- After replacement, unqualified products shall be processed by SUNGROW.
- The customer shall give SUNGROW a reasonable period to repair the faulty device.

Exclusion of Liability

In the following circumstances, SUNGROW has the right to refuse to honor the quality guarantee:

• The free warranty period for the whole machine/components has expired.

- The device is damaged during transport.
- The device is incorrectly installed, refitted, or used.
- The device operates in harsh conditions beyond those described in this manual.
- The fault or damage is caused by installation, repairs, modification, or disassembly performed by a service provider or personnel not from SUNGROW.
- The fault or damage is caused by the use of non-standard or non-SUNGROW components or software.
- The installation and use range are beyond stipulations of relevant international standards.
- The damage is caused by unexpected natural factors.

For faulty products in any of above cases, if the customer requests maintenance, paid maintenance service may be provided based on the judgment of SUNGROW.

10.4 Contact Information

In case of questions about this product, please contact us.

We need the following information to provide you the best assistance:

- Model of the device
- Serial number of the device
- Fault code/name
- Brief description of the problem

For detailed contact information, please visit: https://en.sungrowpower.com/contactUS

